M5c. Thesi s Report

The Meta-Alert Correlation
Engine

Advisors : dr. M.E.M. Spruit (TU Delft), ir. R. Prins (Fox-IT)

A

Melanie Rose Rieback (1113410)

TU Delft

Faculty of Information Technology and Systems
Technical Informatics
Delft
July 11, 2003

TheMeta-Alert Correlation Engine (MACE)

The Meta-Alert Correlation
Engine (MACE)

PART | —INTRODUCTION ..o, 6
L INTRODUCTION. ..ottt 6
L LINTRODUCTION ...ccoooirieiiisceeeeseesseeesssesssssssessssssss s sssssssessssssssesesssenns 6

1 2 THESISOBIECTIVE ..oocciiieiereeiiiecneeiisesessisssesssssssessssssssssssssssssssssssssesssseee 6

1. 3 STRUCTURE OF THIS REPORTcooomirmirmesmissnessssssssssssssssesssssssseeee 7

1. 4 ACKNOWLEDGEMENT S ...ccccoiiiirieiimereesssesssssesssssssssssssssssssssssssssssssseee 8
PART Il —BACKGROUNDcoooooiiiiiiiiiiiiiiiii i 9
2. INTRODUCTION TO INTRUSION DETECTION..........cccueuennnnee, 9
3. TYPESOF INTRUSION DETECTION.......cocoiiiiiiiiiiiiici i, 9
3.1 A GENERIC INTRUSION DETECTION MODELcooccrvveememrreierrcrneeeeneeen 9
3.2ANOMALY BASED INTRUSION DETECTIONcoooemcrreierereeeeaereneens 10
3.2.1 STATISTICAL ANOMALY DETECTIONcovuemmieeennierissneseenn 11

3.2.2 FEATURE SELECTION.......ooomimriimmmrreenscevesesssnsssssssssnsssssssas cssssssennas 11
3.2.3PREDICTIVE PATTERN GENERATIONcovveirreemirerreeeseneseesn 12

3.24 NEURAL NETWORKS........cisrrriimiremiiesemressesessssesessssesssssssssnessssssens 12

3.25 BAYSIAN CLASSIFICATIONcoirrveeimcreeeesersesessecsssssssesssssssessessesnaas 13

3.2.6 LIMITATIONS OF ANOMALY DETECTIONcoooumrrmermrneemerennerernanee 13

3.3 MISUSE DETECTION ...ooutreeierreeieseneeeesseesssssssssssssssesssssssssssssssssssssessn 14
3.3 L PATTERN MATCHING.......ocimrrreieineerreesceveiesseessesssssseessssssas csesessennas 14

3.3.2 CONDITIONAL PROBABILITY ..couiviirieiemereeeisemissesessesesessssessesese 15

333 EXPERT SYSTEMS......ccvoiirreeiinnnessissresssssssssssssssssssssssssssssssssssesn 15

3.34 STATE TRANSITION ANALY SIS.....ccoimirmrimmnmreeinerreessseesesesssssseee 16

3.3.5 KEYSTROKE MONITORING........crveeiumrreeeemreesessersessssssesssssesssseanans 16

3.3.6 MODEL-BASED.......ooscrivieureesiieeessssesesssssessssssssssesssssssssessesssssses 16

3.3.7 LIMITATIONS OF MISUSE DETECTIONcccovvuermreeermcrereemmeenesesennans 17

4. NETWORK VS HOST BASED INTRUSION DETECTION......... 17
4.1 NETWORK BASED INTRUSION DETECTIONcoouemmeeiemneneeeeaesesees 17
42HOST BASED INTRUSION DETECTION ... coseeeeesenesesns 18
4.3 COMPARISON......cvviiuiirieiinesessisssesssssssssssssssssssssss s sssssssssssssssssssnes 18
4.3 1 NETWORK-BASED ID......ccevreverirrmimmireeimmesssesessssesssssssssssssssesssssesssesees 18

4.3 2 HOST-BASED 1Doccvveiimrreeiersereeeisesseesssessessssssssssssssssssssssssssssssesseees 19

433 INTEGRATED APPROACH........coocivuiicreviiiseeereeeesecsssessssesee s 20

5. LIMITATIONS OF INTRUSION DETECTION.........cccovviiininene 21

Melanie Rose Rieback (1113410) Pagel of 117

TheMeta-Alert Correlation Engine (MACE)

PART Il —REQUIREMENTS.........oooooieeeeeeeeeeeeeeeeeeeee 23
6. GENERAL REQUIREMENTS ...t 23
7. METAALERT FUNCTIONALITY ot 23
8. TECHNICAL REQUIREMENTS ... 24
PART IV — PROJECT ENVIRONMENToovveeeeiinen 25
9. INTRUSION DETECTION SETUP. ... 25
0.1 SNORT oot eeeee e eeseeee s eee s ee s ee s ee s eee s eee s eee s eesesees e ees e ees e eeeseeeees 25
9.2 VY SOL oot eee e ee e e ee s e e e e es e ee s e s ees e ees e eer e een e eeees 25
9.3 STUNNEL oo e e e eeeeee s eees s e eee e ees e ees s eeeeeeeeeseeeeeeseeeeees 26
D4 ACID oo eee e e e e s e st ee e ees e 27
10. TESTING ENVIRONMENT ..o e 28
10.1 DUNET-DATABASE ..o ee e ee e seeeeees e eeeeeseeseeees e eeesen e 28
10.2 FOX-IT HAL DATABASE ..o seee s seseeees e seeseenes 29
11. SOFTWARE DEVELOPMENT ..o 29
11.1 OPERATING SYSTEM .o eeeeeeeeseee e se s eseeeees 29
1111 OPENBSD oo e ee e e ee e e s ees e ees e s ses e eeeses 30

11.2 PROGRAMMING LANGUAGES ... veeeeeeeeeeeeeeeeesseeeeseeeeeeseeesesssesesseessssen 30
11.2.1 Gt (W/ ST covereeeeeeeeeeeeeeeesseseeseesseeseesssesesssseesssssssessseeesssesessssssessseenes 30

1.2.2 Coreeoeeeeeeeeee e et es e ee e e eer e s eereee 31

1123 PHPIHTML coeeooeeeeeee e eee e ee e es e eee e eee e ee s se s eeeseees 31

11.3 BUILD AND DISTRIBUTION SYSTEM .ooooeoeeeeeeeee e eeeeeeseeesseeeseeeeeee £7)
11.3.1 GNU AUTOTOOLS. ... eeeeeeeeeeeeseeeeeeeeeesseeeseseeesseessesessessessssseesesessssseees P
PART V —SYSTEM DESIGNoooiiiiiieeeeeei e A
12. OVERVIEW .ot e e e A
13. COMMUNICATIONS MECHANISM ..o e A
13.1INTRUSION DETECTION MESSAGE EXCHANGE FORMAT 35
13.1.1 THE INTRUSION DETECTION WORKING GROUP.......covveeereverreeenn.. 35

13.1.2 RATIONALE FORUSING IDMEFcoeeeeeeeeeeeeeeeeeeeeeeeeeeeee s 5

L322 IDMEFAH oo eeeee e e e e s ee s ee s e e e e e s ees e eee e es e ees e e e s neseees %
13.2.1 LIBIDMEF oo eeeeeeeeeeeseeeeeseeeseseseeeses e seseesesessesaeseseseesseee 3%

13.2.2 LIBIDMEFHF..eeooeeeeeeeeeeeeeeeeeeeeeeee e eee e eee s seeeeeeseeeeeseeesseeseseeseseees 3%

14. PREPROCESSING MODULE ... 36
141 INTRODUCTION e oo eeee e eeeeeeeeeees e eeeeese e smeseseeee e eee s ees e eseeeees 3%
14.2 ARCHITECTURAL DESIGN w.oeeeoeeeeeeeeeeeeeeeee e eee e eeeesees e ees e seeee 37
14.3 EXAMPLE PREPROCESSING PLUGIN w...oooeeeeeeee oo 37
14.3.1 SIMPLE FILTERING EXAMPLE ... v 37

14.3.2 SAMPLE PLUGIN CODE ...oooeooeeeeeeeeeseeeeseeeeeseeseeeseeesseeesseseessesessesseees 38

Melanie Rose Rieback (1113410) Page?2 of 117

TheMeta-Alert Correlation Engine (MACE)

15. EXPERT SYSTEM COREccccciiiiiiiiicc s 40
15. L INTRODUCTION.....cvveurieemmreeesesmessssssessssesesesssssssssssmsssesssssssesssseessssenns 40
15.1.1 INTRODUCTION TO EXPERT SY STEMS........ooommmmeemierreenereneenenns 40

15.1.2 INTRODUCTION TO CLIPS.......cooorveierrremiienneemessseesssesesssssesssssenans 41

15.2 ARCHITECTURAL DESIGNccomsiririemrmreieiesressesreesssssssssssssesssssesessssenns 42
15.2.1 OVERVIEWoiiirriiireeiieresioneseessssesecsssssess st 42

15.2.2 CLIPS ENGINE-........cctiirieieuereeeeeecsessssessssssssssssssssessssssesssssssesssessnees 42

15.2.3 CLIPS SERVER/OUTPUTooumrrrmimmcneemissesesssssessessssssssssssesssssssne 43

15.2.4 CLIPS PARSERcoiiireeiirreemimseessssssssssssessssssssssessessssssssssssssssses 44

16. PRIMARY ALERT MODULES........c.ccooviiiiiiiiccen,s a4
16.1 SNORT PRIMARY ALERT MODULE..........ccouimmiiiimnrmreieisensesesseseesssseseseonns 45
17. METALERT DATABASEccooiiiiiiiiin s 45
18. WWW MANAGEMENT INTERFACE........cocoiiiiiiiiiicn, 50
PART VI —REMOTE MODULES............ccocoociiiiiiiiiiiine, 52
19. OVERVIEWooiiiiiiiii s 52
20. ARPMONITOR ..ot 52
20.1 ADDRESSRESOLUTION PROTOCOLccvvuumrrrierennreesecseseessesessesee 52
20.2 TOOL DESIGN ...cccoiiirrieiiinneeiissessssnnns 52
20.3 EXAMPLE ARPMONITOR ALERT......coviimeiinreeesesssessssesesessssessssesn 53
21. BANDWIDTH MONITOR ..o 54
211 TOOL DESIGNccooiiereeiieneeeiesseeesissesessessssssssssssssssssssssssssssssssssssssessesnnns 54
21.2LIMIT-BASED BANDWIDTH ANALYSIS......oiimmiimrneeiiseneeeiseseesenee 54
21.3 STATISTICAL BANDWIDTH ANALYSIS......ooiimrriiirmrnreiiiseneeeiseceeneee 55
PART VII —=METAALERT ALGORITHMS ..o, %6
22. OVERVIEW ..o 56
23. DATA STRUCTURES.........ccooiiiiii s 56
23.1 INTRODUCTION TO DEFTEMPLATES......oooirvvveeerreeeiesiesceereeeeisesesen 56
232 IDMEF ALERT TEM PLATES......ooiiiirieiienneeisersseisssssssssssssssssssssses 56
233 SYSTEM INFO TEM PLATE ...oiiirrveiirreeserssrnensssnsesssssssssssssssssssssesesesnn 58
24. ATTACK / VULNERABILITY CORRELATION.........cccvniinene 59
241 INITIAL ALERT GENERATION RULES.......oocoommmmmviinirreiiissnneeissseses 59
24.2 ALERT CONVERSION RULES...........oimmirreiiieirnsserneeeessssssessesssssssssees oo 59
24.2.1 BUGTRAQ CONVERSION RULES...........commirreeiirreesirereenessesesses 59

24.2.2 CVE/CAN CONVERSION RULES........oooicrieeemeneeeeirneeeseseseesee 60

24.2.3 SNORT CONVERSION RULES..........ccomiriviemrreeimemissesessesessesesessesesee 61

24.24 WHITEHATS CONVERSION RULES..........ccooummiviirnneriieneenisnsesess 62

243 VULNERABILITY CONVERSION RULES......ccocooviimmmmeeiinnrneeneseeeeeei 63
24.4 AGGREGATION CONVERSION RULES.......ooommmmriiimnerreeiisereeniecsesen 64
245 METAALERT GENERATION RULES.....ccoooiivimmreiiisseneeiisesseeeosesseseoee 64

Melanie Rose Rieback (1113410) Page 3 of 117

TheMeta-Alert Correlation Engine (MACE)

24.5.1 TARGET COMPARISON RULES.........co e 64

24.5.2 METAALERT GENERATION RULES.........c.cooiiiniie, 65
2ABEXAMPLE s 66
25. INTERMEDIATE FACT REMOVAL ...oooviiiiiiiiieeeeeeeeeeeeeee 68
251 ANALYSISOF EXAMPLE ... 68
25.2FACT RETRACTION RULES ... 70
26. PORTSCAN CORRELATION (ALERT COUNTING)........c.ce..... 71
26.1 SSIMPLE IP ADDRE SS COUNTING......ccccoiiiiiriiii s 71
26.1.1 INITIAL ASSERTIONSooiiiiiiise s 71

26.1.2 COUNTING WITH CONTROL FACTS.......coierereerereseerese e 72

26.1.3 REPORTING MULTIPLE ATTACKS... ..o e 72

26.1.4 COMMENTS ...t e 73

26.2 COUNTING USING TIME INTERVALS......coo o 73
26.1.1 INITIAL INTERVAL ASSERTION.....coiiiiiiiirceeeeeeeee e 73

26.1.2 INTERVAL COMBINATION ...t 74

26.1.3 INTERVAL REDUCTIONccooiiiiiiiiiini s 74

26.1.4 GENERATING METAALERTS......cci i 75

26.1.5 COMMENTS ...t e e e s 75
PART VIII —RESULTSAND TESTINGcccccooiiiiiiiiiiiiee 7/
27. OVERVIEW ..o 7/
28. TECHNICAL TESTING ...ooviiiiiii e 77
28 L MEMORY TESTING......ooiiiiiicieeeree e s 7
28.1.1 BOEHM’S GARBA GE COLLECTOR.......cocoiieeereseeeeeee e 77

28.1.2 MEMORY USAGE STATISTICS........cccoiiiiiii 7

28.2 CPU UTILIZATION .o s 78
29. A CLOSER LOOK AT THE DATASETS.....ooiiiiiieeeeeeeenn 7
29. L FOX-IT SNORT-HAL DATASET ... 79
2. L1 IDS SETUP. ... s 79

29.1.2 DATA COMPOSITION......ooiiiiiiiisireeeee e 79

29. 2 DUNET-DATABASE DATASET ... 80
29. 2L IDS SETUP. ...ttt 80

29.2.2 DATA COMPOSITION. ..ot s 81

30. FILTERING AND CORRELATION TESTING.....ccccveeiiiiiiiieen. 81
30.1 SIMPLE NIDSSIGNATURE FILTERING.cociiiiiiiic 81
30.2NIDSHOST/VULNERABILITY CORRELATION....ccoeciiiicceeecee 82
30.2.1COLLECTING VULNERABILITY INFORMATION.......ccviiiirienene 83

30.2.2 CREATING VULNERABILITY FACTS ..o 84

30.2.3 RESULTS OF VULNERABILITY CORRELATIONccccooviiiiiiinine, 84

30.2.4 TARGET VULNERABILITY REPORTS........ccoeiiiirireee 86

31. FILTERING AND CORRELATION PROBLEMS...............cccc.... 87
31.1INSUFFICIENT PL ATFORM/SERVICE INFORMATIONccoccvrinninnen. 87
31.2INSUFFICIENT SI GNATURE CONVERSION INFORMATION..............

Melanie Rose Rieback (1113410) Page4 of 117

TheMeta-Alert Correlation Engine (MACE)

32. FUTURE RESEARCH DIRECTIONS.........cooiiiiiieiceie e, 0
PART X — CONCLUSION.. ..ot 91
PART X —REFERENCES ... 92
PART XI - APPENDIX (SOURCE CODE)ccocooiiiiiciiiiinnne, A

Melanie Rose Rieback (1113410)

Page5 of 117

TheMeta-Alert Correlation Engine (MACE)

Part | — Introduction

1. Introduction

1.1 Introduction

In the last half century, computers have gone from science fiction to having an important
place in global business and society. Computers nowadays are prevaent in high- and
low-tech business, education, leisure, medicine, and an amost unimaginable number of
other applications. People have come to trust computers to manage their most personal
matters — from careers and finances, to communication with family members. Of course,
in exchange for that trust, we expect that computers will keep this information private,
and away from the eyes of the curious and the meddling.

Intrusion Detection Systems are an important piece of technology employed in keeping
computers and their data secure. These systems are a powerful tool for detecting
suspicious or anomalous behavior on either the host or network level. However, security
professionals have a tough challenge coping with the vast amounts of data (and false
positives) that are produced by Intrusion Detection systems. IDS data often comes from
multiple sensors, spanning multiple possibly geographically separated networks. There
may aso be data from multiple brands or types of (ex. host- or sigrature-based) 1D
Systems, as well as data from other tools such as traffic and bandwidth monitors. This
complexity results in the fact that Intruson Detection Systems require constant
monitoring and maintenance, and that these systems are therefore not easily used by the
layman. My thesis project, and this resulting report, will highlight a new approach to
help reduce the impact of this fundamental problem.

1. 2 Thesis Objective

My thesis begins with the following two liberal requirements from my advisar:

Investigate the various methods of intrusion detection, and come up with
something that works better.

Make sure that what you develop reduces the number of false positives and false
negatives

Armed with that, | was otherwise completely free to create what | wanted. At the very
beginning of my literature study, (April, 2002) | defined my long term objectives as such:

| will develop an intrusion detection algorithm or heuristic, and implement this in a
software package. | will create this algorithm based upon the study of suspicious
network activity, both in the context of a honeynet, and in a normal live network.

Melanie Rose Rieback (1113410) Page6 of 117

TheMeta-Alert Correlation Engine (MACE)

The Meta-Alert Correlation Engine was created to satisfy this objective.

This thesis report itself serves two main functions. First it explores the problem domain,
giving a broad view of the current state of Intrusion Detection, and explaining the need
for a Metadert Correlation system. Secondly, this report describes the entire
development cycle that has accompanied redization of this project: requirements,
designing, implementation, and of course, the final testing and results.

1. 3 Structure of this Report

Part | — Introduction. You are reading this section right now. This section is
intended to give a short introduction, an oversight of the thesis requirements, and
a brief glimpse into the content of the rest of this report.

Part 11 — Background. This section gives a broad introduction to the field of
Intruson Detection. It discusses many of the various methodologies and
techniques of intrusion detection, providing comparisons and evaluations of the
techniques effectiveness. This section also highlights some of the existing
problems and limitations within the field of Intrusion Detection that still need to
be overcome.

Part [Il — Requirements. This section describes some of the general, technical,
and user requirements that were established to guide the development of this
project.

Part 1V — Environment. This section describes the genera Intrusion Detection
System setup that | am using, as well as the testing setup (a.k.a. where does my
sample data come from.) The software development environment is aso
described, illuminating the tools and platforms that were utilized in conjunction
with this project.

Part V — System Design. This section gives an overview of the architectural
design of the Meta-Alert Correlation Engine, as well as an in-depth look at each
of the components.

Part VI — Remote Modules — This section describes some of the extra modules
available with MACE, that provide extra input to aid with metaalert correlation.

Part VII — Metaalert Algorithms. This section describes the “intelligent
algorithms’ that are used by the Expert System to filter and correlate large
amount of Intrusion Detection into a small number of critica metaalerts.

Part V111 — Results and testing. This section details the results and effectiveness
of the Meta-Alert Correlation Engine in various circumstances.

Melanie Rose Rieback (1113410) Page7 of 117

TheMeta-Alert Correlation Engine (MACE)

Part IX — Conclusion. This section gives a summary of the entire project, and
draws conclusions about the worthwhileness of the solution that has been created.

1. 4 Acknowledgements

I would like to thank many people that have helped me in various ways throughout this
thesis project. First and foremost, | would like to thank my two advisors. Marcel Spruit
(TU Délft) and Ronald Prins (Fox-IT). | would aso like to thank Lolke Boonstra from
the Dienst Technische Ondersteuning (DTO) for giving me access to the TU Delft
DUNET network. Thanks to my all of my coworkers at Fox-I T — especialy Erwin Fok
(for his IDS experience), and Jeremy Butcher (programming tips), Eric Eekhof
(network/firewall/system support), Joost Bijl (PHP tips), and Paul Bakker (penetration
test tips).

Last but not least, | want to thank my parents, David and Eileen Rieback, the rest of my
family, and my wonderful boyfriend René Butter for emotional support and love
throughout this entire project. They have listened patiently to more details about this
thesis project than they could have possibly been interested in. Thanks for everything!

Melanie Rose Rieback (1113410) Page8 of 117

TheMeta-Alert Correlation Engine (MACE)

Part Il - Background

2. Introduction to Intrusion Detection

Intrusion detection (ID) is a blanket term for detecting inappropriate, harmful, or
anomalous activity on a computer or network. As we saw in the last part of this report,
there are many sources of intrusion information that can be used to illuminate what
actually happened during a system compromise. However, there are also “real time”
intrusion detection systems, that use current process-, network-, and gate information to
determine if unusual activity is currently in progress.

There are many different sorts of intrusion detection methods, ranging from the historical
to the modern. In this part of the report, we will take a look at the different methods and
philosophies of detecting intrusive or unusual events. This includes looking at both the
theory behind intrusion detection, as well as considering current products on the market.

3. Types of Intrusion Detection

3.1 A Generic Intrusion Detection Model

Dorothy Denning, in 1987, created one of the first theoreticd models of intrusion
detection. The model is very generic, using templates to represent various system
elements, and it is forerunner to the current intrusion detection technology that we use
today. Denning describes a “genera-purpose intrusion-detection expert system” called
IDES, that uses rule-based pattern matching to determine anomalous user behavior based
upon profiles of typical user behavior. This model, in order to be independent of system
or intrusion type, heavily uses templates to represent the various parts of the system.[4]
According to Dorothy Denning’'s paper, “An Intrusion Detection Model”, the model has
Six components[4]:

Subjects: Initiators of activity on atarget system — normally users

Objects. Resources managed by the system files, commands, devices, €tc..

Audit Records. Generated by the target system in response to actions performed
or attempted by subjects on objects — user login, command execution, file access,
etc...

Profiles: Structures that characterize the behavior of subjects with respect to
objects in terms of statistical metrics and models of observed activity. Profiles are
automatically generated and initialized from templates.

Anomaly records: Gererated when abnormal behavior is detected

Activity rules. Actions taken when some condition is satisfied, which update
profiles, detect abnormal behavior, relate anomalies to suspected intrusions, and
produce reports.

Melanie Rose Rieback (1113410) Page9 of 117

TheMeta-Alert Correlation Engine (MACE)

The following figure depicts the architecture of Dorothy Denning’s generic intrusion
detection model: [1]

hudit Trail/Network Packets/Application Trails

Event B=nerator

Lesert Hew Rulss
Dpdate Frofils

M?E_yjzisr ing Fules
ko

Rotivity Profile Bule gat
—————

Generate Anomaly
Records
CLOCK
oy SRR o

S |

Generate Hew Frofiles Dynamically

Figure 1 —Dorothy Denning’'s Generic I ntrusion Detection M odel

The intrusion detection model has several capabilities that modern intrusion detection
systems currently possess. It can generate statistical models, such as the Mean and
Standard Deviation Model, Multivariate Model, or Markov Process Moddl. It is capable
of breaking down audit records into atomic system calls, and reporting information on
both a periodic and an event-caused basis. Additionally, the model has capabilities of
automating such tasks as. responses to anomalous events (“activities’), and adding new
users or objects.[4]

3.2 Anomaly Based Intrusion Detection

Anomaly -based intruson detection systems look for perturbations or deviations in normal
behavior on a computer system, suggesting the presence of attacks, system errors, €tc..

Most anomaly detection techniques use probabilistic algorithms to analyze data collected
in various logs on the system. However, these algorithms must have a baseline “normal
activity profile’, to know if system activity is unusual. Based upon this profile, al
system states that vary by a dtatistically significant amount are flagged as suspicious
events. Figure 2 shows a diagram of atypical anomaly detection system.[3]

update proflie
/_\ stotistically

attack
Aucit Data |— System profile e
U dewviant 7

genargie new profiles dynoamically

Figure 2—Typical Anomaly Detection System

Melanie Rose Rieback (1113410) Page 10 of 117

TheMeta-Alert Correlation Engine (MACE)

Anomaly -based intrusion detection leads to two maor problems. Anomalous activities
that are not intrusive are sometimes incorrectly labeled as intrusive, causing a “fase
positive”. On the other side of the coin, not all intrusive activities are anomalous, so
some intrusive activities might not be labeled at all, causing a “fase negative”. False
negatives are a far more serious problem than false negatives, since false positives can
aways be later sorted through.[3]

Therefore, anomaly detection systems become a matter of selecting statistical thresholds
that can eliminate baseline “noise” (acceptable anomalous user activity) without
accidentally ignoring intrusive activities. Anomaly detection systems also periodicaly
update their activity profiles, so that the system can “evolve” with changing (acceptable)
user behavior. A disadvantage to this kind of system is that maintaining profiles and
performing statistical analysis can be computationally expensive.[3]

3.2.1 Statistical Anomaly Detection

Statistical anomaly detection is focused upon the generation and maintenance of behavior
profiles. While initial profiles are generated for each subject, the system gradually and
continuously updates the profiles based upon a number of behaviora factors. Some of
these factors may be: activity type, CPU usage, network connections, etc.. Part of the
difficulty of using statistical anomaly detection systems is selecting which factors to
monitor in order to accurately measure intrusive activities. These factors can be
determined partially by past experience, and can statically or dynamically modified in the
system to try to reduce false negatives and positives.[3]

If statistical behavior profiles are updated, these statistical anomaly detection systems
will adaptively “learn” the behavior of each user. This can be both a postive and
negative characteristic. \hile the system can create a more insghtful profile of user
behavior, it can also be gradually trained by intruders to give false negatives to malicious
intrusive activities. This statistical method also has a disadvantage in that it cannot take
advantage of relationships between or the chronology of events.[3]

3.2.2 Feature Selection

As mentioned in the previous section, selection of features to monitor poses a problem in
anomaly-based intrusion detection. Only a subset of heuristically chosen measures detect
actua intrusions, and this appropriate subset depends largely on the type of intrusions
that will occur. Additionally, different operating systems often require different
combinations of feature information to detect intrusion.[1]

The determination of an optimal combination of features can be done in severa ways.
One possible way is to use a “brute force” method, trying every possible combination of
features to find an optimum. This exhaustive search is inefficient for large numbers of
features, as the number of possible subsetsis equal to the power set of the total number of
factors. Another method is to use genetic learning to adapt the space to the right
combination of features. This approach generates an initial set of features, that is

Melanie Rose Rieback (1113410) Page 11 of 117

TheMeta-Alert Correlation Engine (MACE)

gradually refined by a learning scheme that uses the genetic operators of crossover and
mutation. Subsets of features that have a low probability of intrusion detection are
weeded out, and are replaced by genetic operators that can yield stronger subsets of
features. The efficiency of this approach, as opposed to the use of bruteforce, is largely
determined by the size of the feature space, and well as the predictability measures of the
various subsets.[1]

3.2.3 Predictive Pattern Generation

Anomaly -based intrusion detection systems can use rule-based sequential pattern anaysis
to predict future events, based upon known events that the system has already witnessed.
In “An Introduction to Intrusion Detection”, Aurobindo Sundaram illustrates this
approach by giving the following rule:[3]

El-E2 --> (E3 = 80%, E4 = 15%, E5 = 5%)

This means that if we have event E1, followed by event E2, E3 may occur with an 80%
probability, E4 with 15%, and E5 with 5%.

There are severa advantages to this approach, as opposed to the more traditional
statistical methods. First, this approach provides more support to the system in the early
stages of the learning period. Since we begin with a standard set of rules and
probabilities, it is easier to find intruders that are attempting to “train” the system.
However, despite this initial ruleset, this system retains all of the needed flexibility and
adaptiveness, as the rule based patterns are continuously updated and refined, weeding
out lower quality patterns. Another advantage is that, since the rulesets are continuously
maintained, anomalous activities can be detected and reported immediately upon

happening.[3]

The predictive pattern generation method also has some disadvantages. One of the
problems is that intrusion scenarios must be described by one of the rules in order to be
detected as intrusive. This gives an interesting dilemma of what to do with unknown
events, that are not described by any existing rules. They can be flagged as intrusions,
causing themto be added to the database, but increasing the number of false positives.
On the other hand, they can also be ignored, increasing the number of false negatives. In
the normal functioning of the system, events that match the left side of arule, but deviate
statistically from the right side, are flagged as intrusive.[3]

3.2.4 Neural Networks

Neura Networks are aform of multiprocessor computer system that are characterized by
the following elements:[5]

simple processing elements
a high degree of interconnection
simple scalar messages

Melanie Rose Rieback (1113410) Page 12 of 117

TheMeta-Alert Correlation Engine (MACE)

adaptive interaction between elements

The idea is that each element in the neura network behaves like a biological neuron in
the human brain, accepting a large number of inputs, and producing a single output to
many other neurons. These networks are trained, by adjusting weight values, to
recognize or reproduce certain patterns.[5] This functionality makes them well-suited for
recognizing anomalous events in intrusion detection.

The neura network is trained to predict a user’s next action, based upon a history (or
training set) of past actions. After the training period generates a user profile, the
network then compares actual user input with the profile. This produces a statistical
deviation value, flagging any anomalous behavior. Some advantages of neural networks
are that they deal well with noisy data, their ease of adaptivity to new users, and their
lack of statistical assumption about the underlying data. Some disadvantages are that a
considerable amount & time is required to train the network, and that an intruder can
train the network to produce false negatives if he has access during it’s learning phase.[3]

3.2.5 Baysian Classification

A new technique, Bayesian classification, classifies unaffiliated dita into a number of
data classes, using Bayesian statistical techniques. These techniques try to determine an
optimal number of classes, grouping users with similar profiles, and than assigning a
probabilistic membership function to each new user in the system. Bayesian
classification is akind of statistical intrusion detection, heavily relying upon computation
of probabilistic values to classify observed behavior.[1]

This approach is ill new, and has not yet been implemented and tested. Therefore, it is
not yet clear how well the method handles chronological and incrementally increasing
data. Additionally, being a statistical technique, it suffers from some of the same
disadvantages as other statistical anomaly based intrusion detection systems — rnamely,
finding good threshold values, and intruders gradually “training” the system.[1]

3.2.6 Limitations of Anomaly Detection

First, anomaly-based intrusion detection systems tend to be computationally expensive.
However, the largest problem inherent with anomaly detection systems is the assumption
that the set of intrusive activities is a subset of anomalous activity. In practice, thisis not
necessarily true. Attackers can take over a user’s account, using the same kinds of
commands that the user would normally use. On the other hand, individua users
sometimes display anomalous behavior without actually pursuing any kind of intrusive
behavior.[1] False negatives and false positives. This is one of most persistent
unresolved problem of intrusion detections systems of all kinds.

Melanie Rose Rieback (1113410) Page 13 of 117

TheMeta-Alert Correlation Engine (MACE)

3.3 Misuse Detection

Misuse-based intrusion detection systems compare all activities on a computer system to
a library of known attacks, looking for intrusive behavior. These systems are a bit like
virus detection systems — using attack “signatures’ to store the details of various attack
patterns. Signatures must be able to match both attacks and variations upon known
attacks, without causing false positives by accidentally matching non-intrusive events.
Misuse detection schemes can only detect known attack patterns — therefore one of the
main issues in misuse detection is creating a comprehensive library of known attacks.[3]

A typical misuse detection system is shown below in Figure 3.[3]

modify existing rules

Aucit Data HM Systern profile %ﬂgk
match 7
Tirming | _f
L _Information Add new

rules

Figure3— Typical Misuse Detection System

Misuse-based intrusion detection can be used together with anomaly-based intrusion
detection, to make a more robust intrusion detection system. This combined system
could detect attacks that each method would miss indvidually.[1]

3.3.1 Pattern Matching

Pattern matching-based intrusion detection works by comparing events on a computer
system against libraries of known intrusions. Known attacks and problems are
represented in various “patterns’ to be matched by the ystem. These patterns may be
composed of individual events, sequences of events, thresholds, and combinations or
these using boolean operators (AND/OR/NQOT). Attack patterns are usually compiled
from sources of information security knowledge, such as CERT advisories, and corporate
and individual experiences. Unlike a virus scanner, pattern matching engines do not need
to be updated for new attacks — only for new classes of attacks. Patterns should be
defined generally enough to match variations on common hacks and security problems.
These patterns should ideally match attack classes, regardless of which software contains
the security hole.[2]

Pattern Matching intrusion detection has the following advantages:[2]

Events monitored are only monitored if they match a pattern appropriate for the
computer system. This means that if the IDS is on a web server, if won't have to
check the patterns for a mail server.

Melanie Rose Rieback (1113410) Page 14 of 117

TheMeta-Alert Correlation Engine (MACE)

Pattern matching is more efficient than statistical analysis, due to the absence of
floating point calculations.

Pattern Matching intrusion detection has the following disadvantages: [2]

Scalability and performance depend upon the size and architecture of the pattern
database. For large databases, this is more of a problem.

Pattern databases are difficult to extend with new attack signatures, since the
format is not standardized.

Patterns, while more flexible for catching new attacks than virus scanners, still

need to be updated frequently. If the database is not updated, new attacks may
not be caught by the system.

Machine learning is not utilized in pattern matching systems. It could
theoretically be added by IDS vendors - but it has never been done. |If added,

Artificia Intelligence could add new patterns to the database as new attacks are
“learned”.

Attacks may be difficult to translate from natura language into a pattern.
Therefore, new patterns must be extensively tested to guarantee that attacks are
detected, and that false positives are not produced.

3.3.2 Conditional Probability

This method is similar to probabilistic analysis in anomaly-based intrusion detection.
The largest difference of misuse-based conditional probabilistic analysis is that the data
analyzed is external events, instead of anomaly measures. We can find the conditional
probability by using the following formula:[1]

P(Intrusion)
P(EventPattern)

P(Intrusion | Event Pattern) = P(Event Pattern | Intrusion)

3.3.3 Expert Systems

Expert systems consist of a predetermined rulebase that encodes known intrusion and
attack scenarios into rules. Events are then activated by actions on the system that match
one of the rules in the ruleset. The rule database can be changed for different operating
systems and computer uses (ex. mail/web server.) One of the main difficulties with
expert systems is that, similar to misuse patterns, the rules must be formulated and tested
by security experts. Additionally, new rules must remain consistent with the
interdependencies between other rules in the ruleset. Addition and deletion to the
rulebase can be performed automatically by other intrusion detection methods, such as
anomaly-based statistical methods. One system that integrates anomaly detection with a

Melanie Rose Rieback (1113410) Page 15 of 117

TheMeta-Alert Correlation Engine (MACE)

misuse-based expert system is NIDES (Next Generation Intrusion Detection Expert
System), produced by SRI. The misuse- and anomaly detection portions of NIDES work

together to flag intrusions that would be missed by the individual components.[3]
3.3.4 State Transition Analysis

In state transition analysis systems, attacks are represented & a sequence of transitions
between states on a target system. Each of the states also has associated requirements
that must be satisfied in order to allow transition. These requirements are illustrated as
arcs between different states. An advantage of state transition analysis is that event types
are independent of system-type, and are built directly into the model. A disadvantage is
that attack patterns are limited to sequences of events, instead of being able to represent
more complex types of attacks. Also, there is no easy way to find partial matches to a
given attack pattern.[1]

3.3.5 Keystroke Monitoring

Keystroke monitoring, as the name suggests, captures keystrokes on a termina or
computer and analyzes them for known attack patterns. The aralysis of keystrokes is
entirely independent from the analysis of the underlying application programs, so this
technique could be augmented with other intrusion detection methods. One disadvantage
to keystroke monitoring is that definable user aliases (as offered in several of the
prominent UNIX shells) can defeat this technique. To avoid this, aias expansion and
semantic analysis should included in the keystroke analysis process.[3]

3.3.6 Model-based

In model-based misuse detection, attack scenarios are inferred by looking at other
observable activities. This scheme consists of three separate modules. The “anticipator”
uses scenario models (knowledge bases with intrusion scenario specifications) to try and
predict the next activity that will occur. The “planner” turns this behavioral prediction
into a sample audit trail. Lastly, the “interpreter” searches the actual audit trails for data
similar to that generated by the planner. The system uses these three modules to calculate
intrusion probabilities, and an alert is sounded when the attack likelihood percentages
bypass a given threshold.[3]

The model-based approach has some advantages:[3]
Since the planner and interpreter only deal with a limited number of system
activities, noise in the audit data is reduced, and general performance increases.
If there isindeed an attacker, the system can predict his next move.

It also has some disadvantages:[3]

Intrusion scenario patterns must be easily recognized
Patterns must always occur in the actual attack (or we get false negatives)

Melanie Rose Rieback (1113410) Page 16 of 117

TheMeta-Alert Correlation Engine (MACE)

Patterns cannot be associated with normal system function (or we get false
positives).

3.3.7 Limitations of Misuse Detection

Misuse detection has several primary limitations, the largest of which is that it can only
look for attack patterns that are already known within the system. New attack classes are
constantly developing, and misuse detection can do nothing to stop them until an attack
signature has been developed. Another limitation is the difficulty in capturing all

possible variations on an attack-class in an attack signature. Hackers constantly come up
with new ways to hide old attacks, and the attack signatures may not always detect these
variations. This leads to a perpetual game of catch-up, as hackers develop new attacks
and variations thereof, and misuse detection experts develop new signatures after a
number of computer systems have already been hacked.[1]

Another problem with misuse detection is that it can be very demanding of system
resources. Audit trails can not record information for every program or process variable
since the space and memory limits are quickly exceeded by the flood of information.

Less resource intensive deductive methods can be used, such as predicting the future
values of system variables. However, this oftentimes requires intrusive hacks, worked
into the program source code in order to access the internal variables. (This may aso
exceed memory limits)) Additionally, these predictions are often inaccurate, leading to
false positives, false negatives, or both.[1]

Finally, some techniques cannot be reliably detected by both anomaly- and misuse based
intrusion detection. Some of these techniques include passive sniffing, and 1P address
spoofing, that causes the attack events to seem to originate from a different source
location. The whole approach of intrusion detection relies on the integrity of event
data.[1]

4. Network vs. Host Based Intrusion Detection

Besides the divison between anomaly- and misuse based intrusion detection, there are
also two other commonly used ID categories: network- and host based. Many intrusion
detection products focus upon only one category, while a few integrated products
combine them. We will discuss and compare each category of intrusion detection in the
following chapter.

4.1 Network Based Intrusion Detection

Networkbased intrusion detection typicaly uses a network adapter, running in
promiscuous mode, to “sniff” al of the raw data packets from the network segment in
real-time.[6] These sniffed packets are then sent to the device driver, which subsequently
sends the packets to the Intrusion Detection System for analysis[2] The Intrusion
Detection System commonly uses the following techniques to look for an attack:[6]

Melanie Rose Rieback (1113410) Page 17 of 117

TheMeta-Alert Correlation Engine (MACE)

- Pattern, expression, or bytecode matching
- Exceeding frequency or threshold limits

- Correlation of minor events

- Statistical anomaly detection

Once an attack is detected, system administrator, automatically taking action (such as

dropping the network connection), and initiating expanded logging features for later
forensic and legal analysis.[6]

To effectively detect attacks, network sensors need to be placed in strategic locations
along the network. For example, the first node after the router in the subnet is ideal for
catching inbound subnet packets. The network sensors are also commonly placed along
gateways between different subnets, or immediately behind the firewall in enterprise
systems,[2]

Network IDS's should not affect network performance, athough they can sometimes

become overwhelmed themselves by the bandwidth on large networks. This potentially
troublesome situation can cause dropped packets, resulting in false negatives.[2]

4.2 Host Based Intrusion Detection

Host-based Intrusion Detection, first implemented in the early 1980's, is the manual or
automatic monitoring of changes in security logs and the filesystem on a single computer.
When any file changes, the IDS checks to see if the new entry or file matches a known
attack pattern. If such a match occurs, the system responds by notifying the system
administrator, or by carrying out other automatic responses. (ex. drop carrier)[6]

As time goes on, host-based intrusion detection gets increasingly sophisticated. While
the host-based IDS still uses audit logs, a greater amount of the functionality and analysis
tool are automated. Host-based intrusion detection systems have also started integrating
new technologies, such as cryptographic checksums and simple network-based intrusion
detection additions, such as port access alerts. The responses of host-based intrusion
detection systems are also becoming increasingly timely, as automation allows the
frequency of polling intervals to increase.[6]

4.3 Comparison

4.3.1 Network-Based ID
Here are some of the advantages of using network-based intrusion detection systems:[6]

1 Low cost of ownership — Network based intrusion detection systems usualy use
a limited number of sensors in the network, creating less instalation and

Melanie Rose Rieback (1113410) Page 18 of 117

TheMeta-Alert Correlation Engine (MACE)

management costs. Additionally, there are a number of free opensource
network-based IDS's available on the market.

2. Detects attacks that host-based systems miss — network-based IDS can analyze
packet headers and contents. Looking at packet headers enables detection of
many IP-based attacks (ex. DOS, teardrop attacks). Additionaly, the packet
contents can be scanned for “payloads’, or specific commands that are used in
various attacks. Host-based IDS can not detect any of these attacks until after
they somehow damage or ater the filesystem.

3. More difficult for an attacker to remove evidence — Network based IDS
captures information from the network packet stream real-time, making it difficult
for a hacker to alter the captured data, and “cover his tracks’. Host-base IDS use
audit trails, which can be subsequently modified by the attacker if they are not
copied to another computer system quickly enough. This information makes it
easier to capture and persecute the hacker.

4. Real-time detection and response — Network based IDS can recognize attacks
while they are occurring, alowing a quick response from the system
administrator. Detecting attacks real-time often minimizes the damage that a
hacker causes, and can stop compromises before they actually occur. Host based
systems cannot respond to attacks until suspicious changes to system logs and the
file system have dready taken place. By this time, it may be too late, and the
damage might have aready been done. Real-time intrusion detection also gives
the system administrator the opportunity to perform surveillance on the attacker
(ex. in the context of a honeypot or honeynet.)

5. Detects unsuccessful attacks and malicious intent — Network based IDS can
gather information about what happens outside of the firewal. Inthis way, the
network-based IDS can detect unsuccessful attempts to penetrate system security,
while hostbased IDS would not have noticed it, since none of the files on the
system itself were changed.

6. Operating system independence — Networkbased IDS are less dependent upon
the specific operating system type than host-based IDS. Additionaly, many of
the popular network-based IDS products have been ported to various OS's, or
have been written using a platform-independent interface. (ex. Java)

4.3.2 Host-Based ID
Here are some of the advantages of using host-based intrusion detection systems:[6]
1. Verifies success or failure of an attack — Host-based IDS use logs of events or

changes that actually occurred on the target system. While network-base IDS
may provide early-warning capabilities, host-based IDS can actually verify to

Melanie Rose Rieback (1113410) Page 19 of 117

TheMeta-Alert Correlation Engine (MACE)

what extent the attack was successful (or damaging). This decreases the number
of fase postives.

2. Monitors specific system activities — Host-based IDS monitors specific events
and activities on the system, including file accesses, permissions changes, new
files, and privilege violations. Network-based IDS do not provide such a low
level of detail on system activities. Hostbased IDS also log the activities of users
with administrator permissions, including the addition/deletion/modification of
user accounts. Host-based IDS aso monitor changes to the security policy itself,
and can sometimes stop the installations of trojans, backdoors, or viruses as soon
asit is detected.

3. Detects attacks that network-based systems miss — Host-based IDS may detect
attacks that network-based IDS may miss. These attacks include attacks launched
from the console of the server itself, or other attacks that never have a reason to
be sent across the network.

4. Well-suited for encrypted and switched environments — Host-based IDS can
reside on various hosts across a switched and encrypted environment, avoiding
deployment challenges of network-based IDS in such environments. These host-
based systems @an reside on as many critical hosts as are needed. Additionally,
network-based IDS sometimes have problems identifying attacks that are carried
encrypted through a network. Host-based IDS overcome this limitation, because
by the time they see the data stream, it has aready been decrypted.

5. Near-real-time detection and response — Although host-based IDS is not quite
as “rea-time” as a network-based IDS, it can till come quite close to real-time if
implemented correctly. Host-based systems, instead of using predefined intervals,
can check the content and status of logfiles immediately after modification, using
system interrupts to adert the IDS. There is «ill a delay between logfile
modification and host-1DS recognition, but in many cases, it is small enough to
prevent the attack from progressing any further.

6. Requires no additional hardware — Host-based IDS can reside on existing
system infrastructure, so no extra hardware is necessary to purchase or maintain.
This can significantly cut costs compared to network-based IDS.

7. Lower cost of entry — Host-based I1DS tend to be less expensive to deploy than

network-based IDS. This is due to both the requirement for new hardware, and
the general cost of the IDS system itself (not counting opensource IDS's).

4.3.3 Integrated Approach

The ideal solution for many computer systems is to use an integrated system — having
both host- and networkbased IDS components present. This integration isideal because,

Melanie Rose Rieback (1113410) Page 20 of 117

TheMeta-Alert Correlation Engine (MACE)

as seen in the last sections, each type of IDS has strengths and weaknesses. An integrated
solution alows for a “best of both worlds” solution, that offers greater network resistance
to attacks, and greater flexibility in implementing the system’s security policy.[6]

Figure 4 lists some of the advantages that each type of IDS has to offer a total integrated

IDS solution:[6]

Network-Based 1DS Host-Based 1DS
Notification Alarm to Console Alarm to Console
E-Mail Notification E-Mail Notification
SNMP Trap SNMP Trap
View Active Session
Storage Log Summary (Reporting) Log Summary (Reporting)
Log Raw Network Data
Active Kill Connection (TCP Reset) Terminate User Login
Re-Conficure Firewall Disable User Account
User Defined Action User Defined Action

Figure 4— Integration of Network - and Host Based |1DS Functionality

5. Limitations of Intrusion Detection

After having examined many different types of Intrusion Detection Systems and their
methodologies, here are some broad limitations that the ID field as a whole till needs to
address.[1]

No Generic Building Methodology: Building Intrusion Detection Systems is
still difficult and expensive because of alack of structured methodology. Lack of
agreement on intrusion detection techniques and tools hinders the development of
such a methodology.

Efficiency: Many Intrusion Detection methods are computationally expensive,
and need extensive system profiles and libraries of attack signatures. Also, some

kinds of Intruson Detection Systems are also implemented using expert systems,
causing a high runtime overhead and limiting the representation of possible

relationships between events.

Portability: Most intrusion detection systems have been written for single
environments, and have proved difficult to port to others. This limits the reuse
and retargeting of intrusion detection systems. It is difficult to get rid of these

specific system customizations, as some are currently necessary to detect certain
kinds of attacks in certain computing environments.

Melanie Rose Rieback (1113410) Page21 of 117

TheMeta-Alert Correlation Engine (MACE)

Upgradability: It is often difficult to integrate newer and better intrusion
detection techniques with older existing intrusion detection systems.

Maintenance: Maintenance o intrusion detection systems requires a high level of
security knowledge from the administrator. Some speciaized non-security
knowledge necessary may include expert system rule language, and statistical
calculating methods. This specialized knowledge nakes administering intrusion
detection systems difficult and costly for the average system administrator.

Performance and Coverage Benchmarks: There are not many realistic sets of
intrusion and vulnerability data, nor many published reports of intrusion detection
coverage on various systems. Vendors tend to treat intrusion coverage
qualitatively, since it is very difficult to predict new attacks and their frequency in
large organizations.

No Good Way to Test: There is no standard way of testing intrusion detection
systems. Potentia attacks are difficult to smulate, and the lack of a common
audit trail format makes it difficult to compare the performance of existing
systems in common attack scenarios.

Melanie Rose Rieback (1113410) Page 22 of 117

TheMeta-Alert Correlation Engine (MACE)

Part Il - Requirements

6. General Requirements

As mentioned in the introduction, the primary requirements of this thesis are ideally the
following:

Investigate the various methods of intrusion detection, and come up with
something that works better.

Make sure that what you develop reduces the number of false positives and false
negatives

7. Metaalert Functionality

During the early design process of this project, my colleagues at Fox-IT and | had a
“brainstorming session” to come up with a list of desired functionality regarding
Metaalert creation. The following list is a collection of desired (but not fully
implementable in the short-term) Metaalert correlation behavior:

Potentially successful attacks — A metaalert should be generated when an attack
is directed towards a machine that is vulnerable for that specific attack

Slow typing metaalert — A metaalert that can detect if someone is providing
hand-typed input for a service (ex. while logged in to a port) that normally accepts
batch input from programs.

Recognized combinations of (meta-)alets — A metadert that recognizes
combinations of other aertsmetaalerts that identify a specific break-in scenario.
(Ex. Portscan + known exploit against vulnerable server + high levels of new
outgoing traffic.)

Multi-sensor Alerts — A metaalert generated when several sensors belonging to
the same company/organization are targeted. A multi-sensor alert should be
suppressed if the alerts are also recognized as a port scan.

Too many unique signatures — A metaalerts is generated when too many unique
signatures are generated within a specified time-interval.

Tool/Worm specific metaalerts— Specific groups of alerts are often indicative of
activity of asingle tool/exploit/worm. A metaalert should provide this summary.
Alert followed by traffic policy violation — An dert followed by a traffic policy
violation should generate a higher priority metaalert.

Seldom seen signatures— Some alerts appear so infrequently that they are a sure
sign that something suspicious is going on. This should generate a metaalert.
Slow portscans — A metaderts should be generated when a set number of
metaal erts come from one source in a“long” time interval.

Melanie Rose Rieback (1113410) Page 23 of 117

TheMeta-Alert Correlation Engine (MACE)

Victim Specific Port Scans— A metaalert should be generated when more than a
certain number of ports are scanned on a specific victim machine in a set time
interval.

Short SSH Sessions — A number of short prematurely brokenoff SSH sessions
may indicate that someone is trying to “brute force” the password.

Possible covert channels — Generate a metaaert when replies for certain
protocols (ex. ICMP) appear without the presence of the associated request.
Anomalous protocol behavior — Generate a metaalert when a server suddenly
and unexplicably starts using a new protocol that was previously infrequently or
never used.

Arpwatch metaalerts — New MAC/IP address combinations may indicate
spoofing or wardriving.

Flow-based metaalerts — Alerts should be accepted that provide information
about bandwidth, protocols, ports, and anomalous activity.

It is desirable that the Meta-Alert Qrrelation Engine can accept input from several
different sources (i.e. NIDS alerts, syslog alerts, nessus input, bandwidth monitors,

anomaly detection IDS alerts, etc..) Also, it would be ideal to eventually integrate alerts
from the following other tools: HTTP Insertion Processors, URL analyzers, Statistical
Analysis Modules (page hashes, page size, ngram analysis, content-type), and modules
to detect anomalous database activity.

8. Technical Requirements

While not too many of the technical details are “officia” requirements, | have strived to
follow certain technical guidelines in creating the MetaAlert Correlation Engine. These
guidelines include:

Object oriented and modular system design

Use of STL, and other data structures that are already validated by the developer
community.

Thoughtful coding style (according to GNU coding standards)

Use of an interoperable aert/metaalert communications interface

Eventua portability

| have also worked to make the system as easy-to-use as possible for the end-user. It is
not expected that the end user will have advanced computer skills, so most of the system
processing and management should be accessible via interfaces such as the WWW
Management interface.

Melanie Rose Rieback (1113410) Page 24 of 117

TheMeta-Alert Correlation Engine (MACE)

Part IV - Project Environment

9. Intrusion Detection Setup

9.1 Snort

Snort is an opensource, lightweight, network intrusion detection system.[12] There are
three main ways in which Snort can be used: as a packet sniffer, a packet logger, and a
Network Intrusion Detection System (NIDS). Snort’s sniffer mode simply reads the
packets from a network interface and sends them in a continuous stream to the console.
Snort’s packet logger mode logs all of the sniffed packets to the disk. Snort’s Network
Intrusion Detection mode is the most complex (and perhaps useful) configuration,
enabling Snort to analyze network traffic for matches against a predefined rule set
describing suspicious “intrusive” activity. Snort is also capable of performing actions
based upon what it sees[10]

There are a number of advantages to using Snort as a network Intrusion Detection
System:[12]

Snort is open source (GNU Genera Protection License)

Snort is free.

Snort’ s rule language is easy to use

Rules can be customized to detect new exploits and to utilize specific properties
of a network that is being monitored.

Snort (and the rulebase) is actively supported by alarge user community.

Snort is available for many various OS's, including *NIX, and Windows.

9.2 MySQL

138

My k

MySQL is an open-source SQL database that is developed, distributed and supported by
the company MySQL AB. MySQL is a relational database management system.
“Relational” means that data is stored in separate tables, as opposed to keeping all of the
data in one centralized location. Tables are then linked by defined references, allowing
this relational data to be easily combined through use of “ Struct ured Query Language” or
SQL.[13]

Melanie Rose Rieback (1113410) Page 25 of 117

TheMeta-Alert Correlation Engine (MACE)

The following list describes some of the main advantages of using MySQL as a database
management system:[13]

MySQL software is Open Source (GNU Genera Protection License)

MySQL, written in C and C++, has been tested with a broad range of different
compilers, and has been demonstrated to work on many different platforms.

Uses GNU Automake, Autoconf, and Libtool for portability.

MySQL has APIsfor C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl.
MySQL offers multiple thread and multiple CPU support.

MySQL is efficient. It uses fast B-tree disk tables with index compression.

MySQL is also one of the three database systems (MySQL, Postgres, Oracle) that is fully
supported by Snort and ACID (see section 9.4)

9.3 Stunnel

Stunnel is an open-source program that encrypts network connections using the Secure
Sockets Layer (SSL). By using Stunnel, nonSSL aware programs and protocols can
encrypt sent data without requiring any changes to the source code. Stunnel does not
provide the cryptographic code itself — it uses external SSL libraries such as OpenSSL or
SSLeay instead. Both of these SSL libraries are capable of strong (128 hit) cryptography,
and Stunnel uses the highest strength available to both the client and the server. Stunnel
works by recelving encrypted data on a specific port, and sending it to the SSL server.
Then, the decrypted data is sent to an arbitrary port on that or another machine.[14]

Stunnel supports the following functionality:[14]

SSL client

SSL server

Server and client side certificate verification
TCP wrapper support

IDENT lookups

SMTP protocol negotiation

Source address rewriting (transparency)
Restricting allowed SSL ciphers

| use Stunnel to encrypt the communications between Snort and the MySQL database. |
do this so that attackers cannot glean sniffed information (like usernames and passwords)

from watching the Snort output as it is transported to the database machine.

Melanie Rose Rieback (1113410) Page 26 of 117

TheMeta-Alert Correlation Engine (MACE)

9.4 ACID

Analysis Gonsole for ntrusion Databases

ACID, the Andysis Console for Intrusion Databases is an open-source PHP-based
analysis engine that can search through and summarize a database of security events
generated by various IDS's (including Snort), firewalls, and network monitoring
tools[15] The ACID graphical user interface is shown in Figure 5.

nns ol Tor Entrusios Databases (ACEE) - Microsalt Inbemet Explener provded by Pos-2T Perwnsic 1T Exgarts b

Pkt Wav Feoka Took Hep

o - o - DA A feen whes Gws 3B 9@ -H8

Adesc [beees: (1195 64,55 £mjacdince]_main cho

Analysis Console for Intrusion Databases

agoed [alerl|s] o hw Aled cache

Cesinnled om © Man Mach 24, 2003 102520
Datshase: snof_hal @195 6465 B0 3306 (schema version: 106
Temne windews [2002-11-10 002950 - (2003222 13:51-49)

S 1 Trallic Profle by Piosocol
Unigue Abams: 140 (9 cabegodies) TER %)
T k] i e

IDE = 1%
« Saunce P addrasses 7691 il -
® Desl. P addresses: 288G —_
+ Linigue IP [inks 25026 NP [12%)

& Saurce Pors: 35863

o TCP [367 LDP [224) Porscan Trafic = 1%
¢ Dasi. Ports 4140

o TCP [492%) UDP | =0

» SEaich
w Gragh Alers data

= Snagshet
a Moz recert Alaf= any pradngod, TEP, NP TR
o Today's: alers usigies, By, IP s/ ds
= Lest 2 Hours: aleds imigen, Estisg; 1P s dst

« Mogl Bequent § Ales

Mozl Frecuen Sourpe Parts: ary , TCP | UDP
& La=t T2 Hours: aleds umigee, kstimn; P sc) dst = Moz Frecpen Destnaion Pode any | TCOP | LD8
& Mos recest 15 nigue Slads
Mogl fregeni 15 sddreszas: saurce, dosSnafon
& Last Sporce Pars: any , TCP, UDP _:'_]
] B [T & e
skt] | E2] || Ok 1N Wcrach. | BT Bk .. | i Weurrk [rnctys cConsole F.e el ne

Figure5— ACID Graphical User Interface

ACID has the following features:[15]

Query-builder and search interface. Alerts can be searched based upon
specified aert meta information (ex. signature, detection time) as well as by the
underlying network statistics (ex. source/destination address, ports, payload, or
flags).

Packet viewer (decoder). ACID will graphically display the layer-3 and layer-4
packet information for the aerts.

Melanie Rose Rieback (1113410) Page 27 of 117

TheMeta-Alert Correlation Engine (MACE)

Alert management. Alerts can be logically grouped into incidents (alert groups),
and they can be deleted, exported to email, or archived to another aert database
by a single click on the Graphical User Interface.

Chart and datistics generation. ACID cancreate charts based on time, sensor,
signature, protocol, 1P address, TCP/UDP ports, or classification.

Adaptability. ACID has the ability to analyze data in a wide variety of formats.
Tools exist for Snort alerts, tcpdump binary logs, and logsnorter, ipchains,
iptables, and ipfw logs.

Open Source. ACID is freely available under the GNU Genera Protection
License.

| use ACID to graphically view the alerts that originate from the Snort alert databases.

10. Testing Environment

10.1 DUNET-Database
1 '
TUDelft dtO

The Technical University of Delft (TU Delft) has a 2x10 Gbps network that connects
various research and academic faculties, student houses, and various companies to the
Internet. The connections within the DUNET are provided with level-2 switches, and the
network is divided into several virtual subnets.[22] The DUNET Technica Support
Service (Dienst Technische Ondersteuning) was kind enough to grant me access to a
spanport along a busy junction of the network, and with the assistance of system
administrator Lolke Boonstra, a 1 Gbps sensor was attached to the spanport. The sensor
was running Snort, and was sending the alerts to an external MySQL database, via an
encrypted TCP connection, using Sunnel. Figure 6 shows a genera view of the
DUNET network.

Melanie Rose Rieback (1113410) Page 28 of 117

TheMeta-Alert Correlation Engine (MACE)

Citrix
[\3 3
‘ 3 DUneT

‘ 48 ’ Webserver

%3400

SEnvers

studenten-

Hifzan werkplekken

Figure6— DUNET Network Overview [22]

Alerts were collected over a period of several months, and more than 2 million Intrusion
Detection aerts were eventualy stored in the MySQL database. These aerts were used
as araw input to help devise some of the correlation algorithms that are implemented in
the MACE tool.

10.2 Fox-IT Hal Database

Forensic IT Experts

Fox-IT (Forensic IT Experts), the Information Security company that | amworking in
conjunction with on this project, was aso kind enough to grant me access to their
databases of client intrusion detection data. Thanks to Ronald Prins and Erwin Fok, |
received a supply of Snort databases with real intrusion data. This intrusion data was aso
analyzed for intrusions by a human Security Operations Center (SOC) operator, making
the data instrumental in creating the meta-alert correlation algorithms.

11. Software Development

11.1 Operating System

Melanie Rose Rieback (1113410) Page 29 of 117

TheMeta-Alert Correlation Engine (MACE)

11.1.1 OpenBSD
Openl SIE#,

The OpenBSD project produces a free, open-source, multi-platform 4.4BSD-based
UNIX-like operating system. OpenBSD is built with an emphasis upon portability,
standardization, correctness, proactive security and integrated cryptography. OpenBSD
supports binary emulation of most programs from SVR4 (Solaris), FreeBSD, Linux,
BSD/OS, SunOS and HP-UX.[16]

The following list describes some of the main advantages of using OpenBSD as a
development platform16]

Open-Sour ce — OpenBSD is available under the Berkeley license.

Portable - OpenBSD runs on 10 different commonly-used hardware platforms.
Secure - OpenBSD has undergone a 10-member 1.5year long comprehensive
source code security audit.

Cutting Edge - OpenBSD has strong ongoing development in many aress,
providing access to emerging technologies with an international community of
programmers and end-users.

| am doing al of my software development and testing using OpenBSD 3.2.

11.2 Programming Languages

11.2.1 C++ (W/ STL)

Bjarne Stroustrup, while working at AT&T, developed C++ in order to
add object oriented constructs to the C language. Object oriented
technology was new at the time, and the primary goa of C++ was to
preserve the efficiency of C, while offering this new functionality. A
well written C++ program reflects elements of both object oriented
programming style and classic procedural programming. C++ is an
extendable language in which we can define new data types and
“objects’ in such a way that they act like part of the standard language.
C++ iswaell suited for large scale software development. [18]

The Standard Template Library (STL) is a C++ library of container classes, algorithms,
and iterators. It provides a generic and robust library of the basic algorithms and data
structures of computer science. Almost every component in the STL is implemented as a
template. Like many class libraries, the STL includes container classes. classes whose
purpose is to encapsulate aher objects. The STL includes the following container classes:
vector, list, deque, set, multiset, map, multimap, hash_set, hash_multiset, hash_map, and
hash_multimap. STL container classes are used in much the same way as you would use

Melanie Rose Rieback (1113410) Page 30 of 117

TheMeta-Alert Correlation Engine (MACE)

your own data strucutres, except that it manages details like dynamic memory allocation
automatically.[17]

| have chosen to use C++ as my primary programming language for this project because
its object oriented technology assists me in designing and implementing a strongy
modular system. | have chosen to make heavy use of the Standard Template Library,
because implementation of basic data structure is not my primary objective, and because
my own implementation of these data structures would be more likely to be susceptible to
security “holes’, or subtle programming errors that can compromise the integrity of the
system.

11.2.2C

The C programming language was developed a AT&T, originaly

intended as an operating system for the PDP-11 series of computers

(which later developed into UNIX). The primary goal of C is
c b operating efficiency. C was originally defined by the classic text “The

C Programming Language’, by Kernigan and Ritchie, and this was the
standard used by al C programmers up until recently. The ANSI
g standard for C was approved in December 1989, and this is now the

R official standard for programming in C.[18]

HU..I{ANU\-UI'\L

| use C in a few parts of my program — specifically, the sections that interface with
external libraries written in C (CLIPS, libxml, libidmef) or sections utilizing dynamically

loadable plugins.

11.2.3 PHP/HTML
il ————HTML

WS("

HyperText Markup Language (HTML) is a non-proprietary format based upon SGML,
and is the dominant publishing language of the World Wide Web. HTML uses tags (such
as<hl>and </h1>) to structure text into headings, paragraphs, lists, hypertext links, and
other structures. In addition to text, multimedia, and hyperlink features, HTML also
supports multimedia options, scripting languages, style sheets, printing facilities, and
documents that are accessible to users with disabilities. HTML strives towards the
internationalization of documents, with the goal of making the Web truly World
Wide[20]

The “PHP: Hypertext Preprocessor” (PHP) is a general- purpose scripting language that is
specifically designed for Web development and easy embedding into HTML. Its syntax
is similar to C, Java, and Perl, and the main goa of the language is to alow web

developers to write dynamically generated webpages quickly.[19]

The following list describes some of the major features of PHP:

Melanie Rose Rieback (1113410) Page 31 of 117

TheMeta-Alert Correlation Engine (MACE)

Open Source (PHP License)
HTTP authentication

Cookies

Handling file uploads

Using remote files

Connection handling

Persistent database connections
Safe mode

Command line interface

| am using HTML and PHP to create the WWW Management Interface. HTML was an
obvious choice for creating web content of any sort. | used PHP for the dynamic content

because the extensive collection of built-in libraries provide easy-to-use APIs for much of
the functionality that | needed. (ex. graphics libraries, socket libraries, DB connections).

11.3 Build and Distribution System

11.3.1 GNU Autotools

i . |

GNU AUTOCONF, L Vet

AUTOMAKE, AND e
LIBTOOL T

The GNU Autotools. Autoconf, Automake, and Libtool are tools for ssimplifying and
automating the compilation and distribution process of software. The Autotools assist
with the task of creating portable software — they provide a mechanism that can
automatically detect hardware/software on various systems, so that the software can adapt
it's configuration and functionality accordingly (usually using config.h files and
#DEFINES).[21]

The three parts of the GNU Autotools suite are:[21]

Autoconf - Performs tests to discover system characteristics bef ore the package
is compiled. The source code can then adapt to these differences.

Automake — Generates ‘Makefiles that automatically conform to a number of
“best practice” standards. The organization of a given package is the tool input.
Automake also performs dependency tracking between source code files.

Libtool - A command line interface to the compiler and linker. Libtool is used
mostly to generate static and shared libraries that are platform independent.

Melanie Rose Rieback (1113410) Page 32 of 117

TheMeta-Alert Correlation Engine (MACE)

| use the GNU Autotools to handle the compilation, linking, and distributiontarball
packaging of my project’s source code.

Melanie Rose Rieback (1113410) Page 33 of 117

TheMeta-Alert Correlation Engine (MACE)

Part V — System Design

12. Overview

Meta-Alert Correlation Fingine

The Meta-Alert Correlation Engine is a collection of several independently operating
modules, connected via TCP communications channels. Figure 7 gives a genera
architectural overview of the MACE system.

Preprocessing Modules Expert System Modules Metaalert Databases

Y
M 1

IDS
Archive

~ Preprocessing

M Module
N
e

Live IDS

Host-Based TOO'k Preprocessing
M Module

Figure 7— MACE System Overview

Network-Based
Tools

The rest of the chapters in this section describe each of these modules (and the underlying
communications mechanism) in detail.

13. Communications Mechanism

The underlying communications between all the interna and the remote modules
comprising the Meta-Alert Correlation Engine make use of the Intruson Detection
Message Exchange Format.

Melanie Rose Rieback (1113410) Page 34 of 117

TheMeta-Alert Correlation Engine (MACE)

13.1 Intrusion Detection Message Exchange Format

13.1.1 The Intrusion Detection Working Group

SS9

1 E 1 F

The Internet Engineering Task Force (IETF) is an umbrella organization that supervises
the architectural oversight and continued development of the Inernet. The IETF is a
widely successful organization, as they have created and maintained most of the
protocols in the TCP/IP suite. The IETF is divided into a number of subject areas, and
further into “working groups’, that tackle specific problems related to the Internet.[25]

The Intrusion Detection Working Group (IDWG) is an IETF working group that exists
with the purpose of defining data formats and exchange procedures to facilitate intrusion
detection information management, correlation, and response. Led by Mike Erlinger and
Stuart Saniford-Chen, the IDWG has produced a number of documents that are intended
to become industry (and possibly Internet) standards.[7] These documents include:

Requirements document - describes the high-level functional requirements for
communications between intrusion detection systems and management systems.
This document also provides a number of examples.[7]

Common Language Specification — Describes the proposed “standard” data
format. This document specifies the Intrusion Detection Message Exchange
Format (IDMEF) DTD.[7]

Framework Document — Specifies protocols that are best used for transporting
communications using the data format. This document highlights the use of the
Intrusion Detection Exchange Protocol (IDXP), a protocol that uses a“TUNNEL”
profile to exchange IDMEF information between multiple Block Exchange
Extensible Protocol (BEEP) peers.[7]

13.1.2 Rationale for using IDMEF

| have chosen to use the Intrusion Detection Message Exchange Format to represent the
dert- and meta-alert data within the MetaAlert Correlation System. This decision was
based upon my belief that interoperability is the first step towards solving the Intrusion
Detection correlation problem. There are currently many varied sources of intrusion
detection data (NIDS, HIDS, anomaly detection, etc..) that are al equally valid and useful
for establishing the presence of intrusive activity. However, because they al use various
proprietary formats for representing their data, it is difficult to bring this data together for
the purposes of management and correlation. By using IDMEF, | believe that it will be
easier to extend MACE in new directions in the future, to include new sources of

Melanie Rose Rieback (1113410) Page 35 of 117

TheMeta-Alert Correlation Engine (MACE)

intrusion detection data, and to easily manage and re-analyze the meta-alerts produced by
the MACE system itsalf.

On a more philosophical note, | believe that IDMEF will find widespread acceptance
within the next 5 years. The IDMEF is not yet accepted as an RFC, but the first few
reference implementations are now appearing —in C and Perl, and the first few Intrusion
Detection Systems are starting to experiment with using IDMEF to represent their output

(ex. Snort, Prelude). Only by using a standard will a data format actually become a
standard in the “real world”. | wish to support this standardization process by including

IDMEF within the Meta-Alert Correlation Engine.

13.2 IDMEF++

13.2.1 libidmef

Libidmef is the first reference implementation of the Intrusion Detection Message
Exchange Formet (IDMEF), created by Joey McAlerney from Silicon Defense and Adam
Migus from NAI Labs[26] It builds upon libxml, the XML C library developed in

conjunction with the Gnome project. While this library is still in an early stage of
existence at the time of this writing (verson 0.7.2), libidmef has thoughtfully
implemented the basic data structures and parser functionality, based upon the

continuously-evolving IDMEF common language documentation.

13.2.2 libidmef++

Libidmef, while a huge step in the right direction, was not precisely what | needed to
interface with the C++ Meta Alert Correlation Engine. To fill this need, | developed my
own C++ wrapper around libidmef, called libidmef++. Libidmef++ provides an object-

oriented interface to libidmef, offering a more intuitive interface for C++ programmers
that need to automatically generate IDMEF aerts. Libidmef++ aso handles the

connectivity problems that surface when connecting C++ code with an existing C library.

All of the Meta-Alert Correlation Engine modules use libidmef++ to represent (meta)
alert datathat is transmitted through TCP communication sockets.

14. Preprocessing Module

14.1 Introduction

The MetaAlert Correlation Engine ams to reduce the number of false positives
generated by intrusion detection systems. The presence of false positives is one of the
largest problems for Security Operations Center (SOC) personnel, as a large percentage
of data that causes IDS alerts is ssmply random junk that happened to trigger an IDS
signature, or large volumes of worm attacks that might not even threaten the computers

Melanie Rose Rieback (1113410) Page 36 of 117

TheMeta-Alert Correlation Engine (MACE)

that are being monitored. A human security expert usualy has little trouble separating
the “junk” from the meaningful aerts. However, this still presents a huge workload for a
single operator to deal with.

The MACE Preprocessing Module attempts to automatically deal with this problem. The
preprocessing module is meant to filter out the obvious false positives, that a human
operator would otherwise have to spend time looking at.

14.2 Architectural Design

The MACE Preprocessing Module consists of a series of dynamically loadable plugins
that can filter out specific alerts based upon specific alert characteristics (ex. signature, 1P
address, ports, packet content, etc...) Dynamically loadable plugins were chosen as the
means to represent this ssmple filtering information, so that end-users can easily modify
or add new plugins to their MACE system, in accordance with their needs. Plugins could
be periodically downloaded from a centra repository, much in the same way that other
security tools (like Snort or Nessus) use for keeping up-to-date with the latest security
iSsues.

The Preprocessing Module receives IDMEF encoded alerts via TCP communications
channels, originating from intrusion detection systems (ex. Snort) or remote modules (ex.
ArpMonitor, Bandwidth Monitor). The module then activates the appropriate plugin to
process that alert, and the system than determines whether the alert should be filtered out
or not. If the alert is not filtered out, it is sent on via TCP to the next step, the Expert
System Core (see chapter 14.)

Since al of the incoming alerts are represented by the IDMEF, new plugins could be
created for the Preprocessing Module, to provide preprocessing support for other IDS
systems that are not yet supported.

14.3 Example Preprocessing Plugin

14.3.1 Simple Filtering Example

Snort rule #3885 looks for the presence of the string “/bash” in packet content. This rule
may aert the SOC about a hacker that is trying to get a bash shell on a target machine.
The actua rule is shown below:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (nsg: " WEB- CGl
bash access";flow to_server, established; uricontent:"/bash"; nocase;
reference: cve, CAN- 1999-0509; reference: url, ww. cert. org/advi sori es/ CA
1996-11. html ; cl asstype: web-application-activity; sid:885; rev:6;)

However, sometimes other things activate this rule by accident. I’'ve seen alerts with a
packet content of:

Melanie Rose Rieback (1113410) Page 37 of 117

TheMeta-Alert Correlation Engine (MACE)

GET / nos/ ni euws/ i mages/ bui t enl and/ 165/ bashi r _bakar _abu.jpg HTTP/ 1.1
Accept: */* Referer

http://ww. onr oep. nl / nos/ ni euws/ hoof dpunt en/ hoof dpunten. ht Ml Accept -
Language: nl Accept - Encodi ng: gzip, deflate User-Agent: Mzilla/4.0
(conpatible; MSIE 6.0; Wndows NT 5.0) Host: www. onroep. nl
Connection: Keep-Alive

or

GET /syndi caat/ pi cs/ BasHoekstra.jpg HTTP/ 1.1 Accept: */* Referer
http://spike.oli.tudelft.nl/syndicaat/index.cfn?l D=2 Accept-Language:
nl Accept-Encoding: gzip, deflate |1f-Mdified-Since: Sun, 19 May 2002
15:40: 25 GMr | f-None-Match: "5al4c87e4bffcll: 395d" User- Agent:
Mozillal/ 4.0 (compatible; MSIE 5.5; Wndows 98; Wanadoo cable) Host:

spi ke.oli.tudelft.nl Connection: Keep-Alive

These are both examples of packets that match an attack signature, but that are clearly
recognized as benign immediately upon inspection.

Therefore, we may want to use the preprocessing module to filter out aerts, triggered by

snort aert #3885, that have a character with the value [az,A-Z] directly after the string
“/bash”, thus rendering the “bash call” ineffective.

14.3.2 Sample Plugin Code

Here is sample plugin code to solve the simple filtering example described above:

~

E I G

pl ugi n_SI D_885. cxx
Plugin to preprocess Snort alert SID #885
/

#i ncl ude <i ostream h>
#i ncl ude <stdio. h>

#i ncl ude "li bi dmef pp. h"

/* Don't use C++ nanme mangling for exported synbols */
extern "C' {

/* These are the synmbols to be exported */
#define plugin_init I'i bpl ugi nSI D885_LTX_pl ugi n_ini t
#define plugin_run ['ibplugi nSI D885_LTX_pl ugi n_run

/* Information about our plugin */
#define NAME "Plugin SID #885"

Melanie Rose Rieback (1113410) Page 38 of 117

TheMeta-Alert Correlation Engine (MACE)

#define DESCRI PTION "This plugin performs the preprocessing on alert

885"
#defi ne AUTHOR "Mel ani e Ri eback"

/* Plugin initialization function */
int plugin_init() {
cout << "Initializing plugin SID #885\ n";

return O;

}
/* Plugin initialization function */

int plugin_run(idnmef_object *Idnef_Object) {
cout << "Running plugin SID #885\n";

/!l Declare a few vari abl es
string::size_type pos = 0;
char next_letter;

int ret_val;

/1 W need to create a copy of the alert with a new pointer to
/1 avoid problenms with C++ conpiler nane-mangling
i dmef _obj ect *Idnmef_Object2 = new i dmef _object();

/'l Generate the new | dnef _Object by reconstructing fromthe
/1 xm string

string Tenp = string(return_xm _string(ldmef_Object));
parse_xml _string((char *)Tenp.c_str(),|dmef_Object2);

/'l Get the packet data fromthe alert
string Tenp = string(ldmef_Object2->get_idnmef_message()->
get _idnef _alert(0)->get _idmef_additional data(0)->get_data();

/1l Search for the location of the string “/bash” in the data
pos = Tenp.find ("/bash", 0);

/1l Store the value of the next letter after the string “/bash”
next _letter = Tenp[pos+5];

/'l Check if the value of next_letter is [a-z, A-Z]
if (isalpha((int)next_letter)) {

/*
* next_letter IS [a-z,A-Z]. Therefore, we can filter this
* alert out
*/
ret_val = 2;
}

el se {

/*

* next_letter is NOT [a-z,A-Z]. Therefore, this mght be a
* real attack

*/

ret_val = 0;

Melanie Rose Rieback (1113410)

Page 39 of 117

TheMeta-Alert Correlation Engine (MACE)

/* Possible return val ues:

*

*

O - Alert is okay. Don't delete.

* 1 - Error during plugin execution. Don't delete.
* 2 - Delete this alert

*/

/'l Free up sone nenory

Tenmp. ~string();
del ete | dnmef _Object 2;

/! Return our result
return ret_val;

15. Expert System Core

15.1 Introduction

15.1.1 Introduction to Expert Systems

Expert systems are programs that try to emulate human expertise and problem solving
abilities through use of a technique called “rule-based” programming. Rule-based
programming makes use of heuristics, or “rules of thumb”, to specify actions to perform
when specific patterns of data are encountered.[9] An example rule is shown below:

(defrul e match-dunet -i p- addr ess
(systeminfo (nmy-i p-address ?ip_addr))
(idmef _address (md ?m d_val ue) (index ?address_index) (address
?i p_addr))
(idmef _node (mid ?mid_val ue) (index ?node_i ndex) (Address
?addr ess_i ndex))
(idmef _target (md ?nmid_val ue) (Node ?node_i ndex))
=>
(assert (assert-ids-specific-fact ?md_value)))

Rules are composed of an if portion and athen portion. Theif portion of aruleis a series
of patterns which specify the data that causes the rule to “activate”. The then portion is a
set of actions to be executed upon this activation.[9]

The above rule, when provided with a fact describing the type of intrusion detection

system, and a fact describing an attack itself, will assert or add a new fact to the system,

containing information about the intrusion detection system, the type of attack, alert CID,
and destination IP address. The if portion of the rule is specified by what appears before
the arrow (=>), and the then portion is what appears afterwards.

Melanie Rose Rieback (1113410) Page 40 of 117

TheMeta-Alert Correlation Engine (MACE)

One of the primary requirements of the Meta-Alert Correlation Engine is to reduce the
number of false positives that human IDS operators have to weed through. Expert
systems provide an appropriate means of simulating this human ingenuity and
experience, utilizing comprehensive knowledge bases, and constant yet adaptable sets of
rules to sort and correlate the Intrusion Detection alert data as it appears.

15.1.2 Introduction to CLIPS

A TSR EERES
CLIPS

CLIPS is an expert system tool which provides a complete environment for the
congtruction of rule and/or object based expert systems. Created in 1985, by NASA’s
Johnson Space Center, CLIPS is now widely used throughout the government, industry,
and academia Some of its main features are:[9]

Knowledge Representation: CLIPS handles a wide variety of knowledge with
support for three different programming paradigms. rule-based, object-oriented
and procedural. CLIPS alows complex systems to be modeled as modular
components (which can be easily reused to model other systems or to create new
components). CLIPS aso provides capabilities similar to those found in
languages such as C, Java, Ada, and LISP. [9]

Portability: CLIPS was written in C for portability and speed and runs on a
whole number of operating systems. Some of these include: Windows 95/98/NT,
MacOS X, and *nix. Additionaly, CLIPS comes with a complete set of source
code, which can be tailored to meet a user's specific needs.[9]

I ntegration/Extensibility: CLIPS can be embedded within external source code,
called as a subroutine, and integrated with languages such as C, Java, FORTRAN
and ADA [9]

Verification/Validation: CLIPS contains features that support the verification
and validation of expert systems that are created using the system. This support
includes support for modular design and partitioning of the knowledge base, static
and dynamic constraint checking, and analysis of rule pattern semantics to locate
inconsistencies that could prevent arule from firing.[9]

Fully Documented: CLIPS comes with extensive documentation including
reference manuals, beginning and advanced user guides, and detailed architecture
guides.[9]

Melanie Rose Rieback (1113410) Page41 of 117

TheMeta-Alert Correlation Engine (MACE)

Open Source: CLIPS is maintained as open source software, and is freely
available under the GNU General Protection License.[9]

15.2 Architectural Design

15.2.1 Overview

The CLIPS Expert System core is the part of the Meta-Alert Correlation Engine that is
primarily responsible for the correlation and prioritization of incoming Intrusion
Detection alerts. The data flow of the system is illustrated in Figure 8:

CLIPS Server/Output
Incoming Outgoing

/AI;ts/ = i Metaalerts

CLIPS Engine

Metaaler
t DB

C - as e
Figure 8 — Architectural Overview of CLIPS Expert System Core

The CLIPS Expert System Core consists of a number of separate componerts, connected
via TCP communications channels that are located on either the same computer, or on
another computer elsewhere on the network or Internet. First, the aerts arrive via TCP
from primary sources (IDS's) or secondary sources (preprocessing modules). Then, the
CLIPS Server reads and parses the incoming alerts, and sends them to the CLIPS Engine
via a named pipe (FIFO) on the system. The CLIPS Engine uses intelligent algorithms
and correlation techniques to produce a number of Meta-alerts. (The specific agorithms
will be discussed in detail in Chapter VI). Output of the CLIPS Engine is then sent by
the CLIPS Output module via another named pipe to a socket, and the CLIPS Parse
Module reads this output, extracting the meta-alerts, and sending them to the Meta-alert
Database.

The upcoming sections in this chapter will describe each of the aforementioned
components of the CLIPS expert system core in detail.

15.2.2 CLIPS Engine

The CLIPS Engine is smply an unmodified verson of CLIPS Verson 6.20, with
standard input/output routed to the two FIFOs.

Melanie Rose Rieback (1113410) Page 42 of 117

TheMeta-Alert Correlation Engine (MACE)

The CLIPS engine is fed with a variety of commands, mostly originating from the WWW
management interface (commands and rule definitions), or from the primary or secondary
alert sources (fact definitions).

Figure 9 shows a typical screenshot of the CLIPS commandline interface.

& 105,64.85.69 - PuTTY

id

cmation

ie—ip—address-dest Zipdest ?ts2 ?ts Pocid:s Poid))

Figure9— A Typical Screenshot of the CLIPS Engine

The specific rules and facts (intelligence) utilized by the CLIPS engine will be discussed
in great detall in Section VI of this report.

15.2.3 CLIPS Server/Output

The CLIPS Engine is serviced by independent client/server processes that handle the
socket communications, and pass alerts (and other information) across the filesystem via
named pipes on the operating system. This functionality is provided by two modules:
CLIPS Server and CLIPS Output. The CLIPS Server module accepts incoming alerts
and commands via a TCP connection on Port 49000 (configurable). The CLIPS Server
then passes this input, via a FIFO, to the CLIPS Engine. The CLIPS Output module
receives the CLIPS Engine output via a FIFO, and it attaches this output to TCP Port
49001 (configurable), so that other modules can simultaneously connect and read this
information. Keep in mind that things like port numbers are easily reconfigurable.

An overview of the CLIPS Server/Output module functionality is shown in Figure 10.

Melanie Rose Rieback (1113410) Page 43 of 117

TheMeta-Alert Correlation Engine (MACE)

N
CLIPS FIFOIN Y&Es
Server T

CLIPS Engine

CLIPS
Output

Incoming Commands / Outgoing Metaalerts

Alerts (Port 49000) (Port 49001)

Figure 10— CLIPS Server/Output Module Functionality

15.2.4 CLIPS Parser

The CLIPS Parser Module reads the CLIPS Engine output, by connecting to the CLIPS

output module. This module parses out the meta-alerts as they are generated, and it sends
them to the appropriate database(s). The CLIPS Engine produces output that is already

in IDMEF format. Here is an example Metaalert, as generated by CLIPS:

CLI PS> <Fact - 44>

CLI PS> Met aal ert: <?xm version="1.0"?><! DOCTYPE | DVEF- Message PUBLIC "-
/11 ETF/ / DTD RFC XXXX | DMEF v1.0//EN' ""><| DMEF- Message
version="1.0"><Alert ident="136092"><Anal yzer anal yzerid="2"

cl ass="snort " ><Node><nane>unknown: bge0</ nane></ Node></ Anal yzer ><Creat eT
i me ntpstanp="0xc2al4226.0x0">2003-06-

23T09: 08: 54Z</ Cr eat eTi ne><Det ect Ti ne nt pst anp="0xclad4b37c. 0x0">2002- 12-
13T19: 29: 00Z</ Det ect Ti ne><Sour ce

i nterface="bge0" ><Node><Addr ess><addr ess>130. 161. 180. 56</ addr ess></ Addr
ess></ Node><Ser vi ce><port >3729</ por t ><pr ot ocol >t cp</ pr ot ocol ></ Servi ce>
</ Sour ce><Tar get

i nterface="bge0" ><Node><Addr ess><addr ess>130. 161. 180. 55</ addr ess></ Addr
ess></ Node><Ser vi ce><port >139</ port ><pr ot ocol >t cp</ pr ot ocol ></ Servi ce><
| Target ><Cl assification origi n="vendor-speci fic"><nanme>NETBI OS NT NULL
sessi on</ nanme><ur| >530</ ur| ></ Cl assi fi cati on><Addi ti onal Dat a
type="string" meani ng="Packet

Payl oad" >000000B6FF534D42730000000018038000002AABC6B4F918DA6300000000FE
CA000000000D75008400041132000000000000000100000000000000D40000004700000
0000000570069006E0064006F007700730020004E005400200031003300380031000000
0000570069006E0064006F007700730020004E005400200034002E0030000000000004F
FO00000000001002700005C005C004F00530043004100520030004E005400310050Q0049
00500043002400000049504300</ Addi ti onal Dat a></ Al ert ></ | DVMEF- Message>

The CLIPS parser reads this as input, and sends the meta-alert via TCP to the appropriate
meta-alert and/or viewer databases.

16. Primary Alert Modules

The Primary Alert Modules are responsible for collecting the information from the
primary sources of alerts. These primary sources may include Network Intrusion

Melanie Rose Rieback (1113410) Page 44 of 117

TheMeta-Alert Correlation Engine (MACE)

Detection Systems (NIDS), Host-Based Intrusion Detection Systems (HIDS), or other
tools that produce alerts based upon sone kind of suspicious or anomalous activity.
These Primary Alert Modules are less generic than the rest of the MetaAlert Correlation
Engine because they must read and interpret aert data that is stored in a potentialy
proprietary format. The Primary Alert Modules are responsible for reading and
converting (live or archived) IDS aert data into IDMEF format. Upon this conversion,
the module sends the IDMEF alerts, via TCP, to the Preprocessing Module for initial
filtering.

As time goes on, and as the Meta-Alert Correlation Engine matures, extra primary aert
modules can be written. This would allow MACE to correlate and manage aerts from a
wide number of primary input sources.

16.1 Snort Primary Alert Module

The Meta-Alert Correlation Engine has a Primary Alert Module to read aerts from a
Snort database.

This Primary Alert Module keeps a record of the last alert processed from the database,
and it automatically processes the alerts incrementally until they have been processed to
completion. This module can be activated from a cron script to process newly -generated
alerts upon a predefined time interval. A MySQL connection is used (via a generalized
MACE API library) to query the appropriate aert from the database. Then, the alert is
converted into IDMEF format, using libidmef++. Finaly, the aert is sent via TCP to the
desired Preprocessing Module. (The IP address/port of the destination is configurable, so
the aert could alternately be sent directly to the CLIPS Server.)

17. Metalert Database

| am currently using a MySQL database to hold the meta-alert data (athough a new
MACE AP library could be written in the future to enable use of other databases.) The
Metaalert database, as it is currently implemented, is structured as shown in Figures 10-
20.

The first ER diagram, Figure 11, shows the relationship between the idmef _message,
idmef_alert, and idmef _heartbeat tables.

idmef_message

PK 1D
version
idmef_heartbeat idmef_alert
PK |MID PK | MID
ident ident

Melanie Rose Rieback (1113410) Page 45 of 117

TheMeta-Alert Correlation Engine (MACE)

Figure 11-Metaalert Database ER Diagram (Part 1)

The second ER diagram, Figure 12, shows the relationship between the following tables:
idmef_alert, idmef_analyzer, idmef_source, idmef_target, idmef time,idmef assessment,
idmef classification, idmef additionaldata, idmef toolaert, idmef_correlationalert, and
idmef_overflowalert.

idmef_alert
PK [MID
ident
- T - f 1
idmef_analyzer idmef_source idmef_target idmef_time idmef_assessment | | | idmef_classification
PK |MID PK | MID PK | MID PK | MID PK | MID PK | MID
analyzerid ident ident unix_timestamp origin
manufacturer spoofed decoy name
model interface interface url
version
analyzer_class
ostype - i -
osversion idmef_additionaldata | | jdmef_toolalert idmef_correlationalert | | idmef_overflowalert
PK [MID PK |MID PK |MID PK | MID
type name name program
meaning command size
data buffer

Figurel2—Metaalert Database ER Diagram (Part I1)

The third ER diagram, Figure 13, shows the relationship between the following tables:
idmef_heartbeat, idmef_analyzer, idmef_time, and idmef_additional data.

idmef_heartbeat

PK | MID
ident
—— -
idmef_analyzer idmef_additionaldata
PK | MID LIAELIC PK | MID
PK | MID
analyzerid type
manufacturer unix_[imestamp meaning
model data
version
analyzer_class
ostype
osversion

Figure 13—Metaalert Database ER Diagram (Part 111)

The fourth ER diagram, Figure 14, shows the relationship between the following tables:
idmef _user, idmef userid

Melanie Rose Rieback (1113410) Page 46 of 117

TheMeta-Alert Correlation Engine (MACE)

idmef_user

PK | MID

ident
category

idmef_userid

PK 1D

Figure 14—Metaalert Database ER Diagram (Part V)

Thefifth ER diagram, Figure 15, shows the relationship between the following tables:
idmef_service, idmef_snmp_service, idmef_webservice

idmef_service

PK | MID

protocol

T

idmef_snmp_service idmef_webservice

PK |MID PK | MID

oid url
community cgi
command http_method

Figurel5—-Metaalert Database ER Diagram (Part V)

The sixth ER diagram, Figure 16, shows the relationship between the following tables:
idmef_target, idmef_process, idmef _node, idmef _user, idmef_service, idmef_filelist

idmef_target
PK ID
ident
decoy
interface
1 1
idmef_process idmef_node idmef_user idmef_lservice idmef_filelist
PK [MID PK | MID PK [MID PK [MID PK |MID
ident ident ident ident
name category category name
pid location port
path name portlist
protocol

Figure 16—Metaalert Database ER Diagram (Part VI)

Melanie Rose Rieback (1113410) Page 47 of 117

TheMeta-Alert Correlation Engine (MACE)

The seventh ER diagram, Figure 17, shows the relationship between the following tables:
idmef_source, idmef_process, idmef_node, idmef_user, idmef_service

idmef_source
PK |MID
ident
spoofed
interface
] [
I
I EEEES idmef_node idmef_user Gl Baniee
PK | MID
MiD PK |MID PK |MID PK [MID
ident ident ident ident
name name
id category category
pI location port
ath i
p name portlist
protocol

Figure 17—Metaalert Database ER Diagram (Part VII)

The eighth ER diagram, Figure 18, shows the relationship between the following tables:
idmef _source, idmef _process, idmef_node, idmef_user, idmef_service

idmef_assessment
PK | MID
idmef_impact idmef_action | |idmef_confidence
PK | MID PK |MID PK |MID
severity category rating
completion data data
type
data

Figure 18—Metaalert Database ER Diagram (Part VIII)

The ninth ER diagram, Figure 19, shows the relationship between the following tables:
idmef_analyzer, idmef_node, idmef_process

Melanie Rose Rieback (1113410) Page 48 of 117

TheMeta-Alert Correlation Engine (MACE)

idmef_analyzer

PK | MID

analyzerid
manufacturer
model

version
analyzer_class

ostype
osversion
]
idmef_node idmef_process
PK 1D PK [MID

ident ident
category name
location pid
name path

Figure 19—Metaalert Database ER Diagram (Part I X)

The tenth ER diagram, Figure 20, shows the relationship between the following tables:
idmef _correlationalert, idmef_toolalert, idmef_alertident

idmef_toolalert

idmef_correlationalert
PK 1D
PK [MID
name
name command

] [
idmef_alertident

PK | MID

data
analyzerid

Figure20—Metaalert Database ER Diagram (Part X)

The eleventh ER diagram, Figure 21, shows the relationship between the following
tables: idmef_webservice, idmef_process, and Args

idmef_process

PK |MID

idmef_webservice

PK [MID)
ident

name
cgi pid
http_method path

e

Args

PK |MID

Figure 21-Metaalert Database ER Diagram (Part XI)

Melanie Rose Rieback (1113410) Page 49 of 117

TheMeta-Alert Correlation Engine (MACE)

18. WWW Management Interface

The Meta-Alert Correlation Engine, while designed as a number of loosely
interconnected modules, needs a centralized and intuitive management interface for the
users. The average computer user cannot be expected to, and would probably not be
interested in, learning the internals of such a system. Therefore, al of the various
modules. The Primary Alert Module, Preprocessing Module, CLIPS Engine, and Meta-
Alert Database, should all be accessible via a single easy-to- use access point.

For this purpose, | have created a WWW Management Interface. This interface, written
with a combination of HTML and PHP, uses TCP to bring the user in contact with each
of the separate modules. The WWW Management Interface currently offers the user the
ability to enter commands directly into the CLIPS Engine, and to query meta-alerts from
the Meta-alert Database.

In the future, | want to add a higher level interface here for each of the components. For
the CLIPS Engine, the user should ultimately be able to configure the expert system
rules, and specify their monitored machines platform and service information from this
WWW Interface. The Primary Alert Modules should also receive information from the
Management Interface controlling their execution. The dynamically loadable plugins of
the Preprocessing Module could aso ideally be modifiable via this web interface. The
Meta-Alert database should also ideally be accessible via an ACID-style interface, that
can display (meta) aderts from an IDMEF Meta-Alert database format, in place of using
the current Snort-specific format.

A screenshot from the current WWW Management interface is shown in Figure 22.

Melanie Rose Rieback (1113410) Page 50 of 117

TheMeta-Alert Correlation Engine (MACE)

R Uebiled Dacumpnt - Meinaslt bntmnet Esphes povadsd by Fos AT Feeeon: 1T Expailz by
Fis Edt ew leul Tods Help ¥
BBk - - D A O Gy Glfwwe GNeks 3 1 - o B

[] e 15 B4 T 05 rerca ke i =] b | k=

Execute a command on the CLIPS server

CLIPE commard: Sbmiuery |
5
2043 (GITT bt Fachock T 1] ! : aed # Docteatatation |
2] i e 1 B B e kit L CT =
1 Tt || |J‘¢||£EME,IE‘P¢:I~* !£1£ME|_E |E . Efjteen I [G ew

Figure 22— MACE WWW Management Interface

Melanie Rose Rieback (1113410) Page51 of 117

TheMeta-Alert Correlation Engine (MACE)

Part VI - Remote Modules

19. Overview

Just as Primary Alert Modules are available to expand the number of potential MACE
input sources, Remote Modules are also available to provide extra customized input to
ad meta-alert correlation. Remote Modules are smply independent programs that
perform some kind of monitoring function, and generate alerts in an IDMEF format,
sending them to a specified |P address/port.

The Meta-Alert Correlation Engine currently has two remote modules available: the

ARP Monitor, and the Bandwidth Monitor. These two modules will be discussed in the
upcoming two chapters.

20. ARPMonitor

20.1 Address Resolution Protocol

Before packets can be sent between any two machines, each machine must know the
data-link address of the “next hop router” along the path to the specified IP address.

Address Resolution Protocol is an Internet Protocol, specified by RFC 826, that provides
this mapping between 32-bit |P addresses and data link addresses (ex. MAC addresses.)
ARP Reguests and Replies are sent across the network to update the “ARP caches’ of
machines on the network, so that they store the most recent | P/datalink address pairs.

Every time a new machine is attached to a network, or a hardware address changes, an
ARP Reply will eventually convey the new information to the rest of the computers on
the network. This information can be useful to assist with IDS correlation. If a new
MAC address appears unexpectedly on an otherwise static network, this may signify the
presence of a new and unwanted machine. Similarly, a changed IPPIMAC address pair
may indicate that an attacker is spoofing one of the IP addresses on the network.

The Lawrence Berkley National Laboratory (LBNL) has created a program called
arpwatch, as part of the tcpdump suite of programs, that is capable of monitoring these
| P/data-link address pairings.[27] | have created a smaller program, called ARPMonitor,
that is directly modeled after arpwatch. ARPMonitor, while sharing much of the same
functionality, is much smaller than arpwatch, forgoing the bundled SNMP applications
and sending IDMEF-formatted alerts to an |P address/port in place of emailing the aerts,
as arpwatch does.

20.2 Tool Design

Melanie Rose Rieback (1113410) Page52 of 117

TheMeta-Alert Correlation Engine (MACE)

ARPMonitor also uses libpcap to sniff ARP traffic from the sensed (or specified) network
interfface. ARP replies are specificaly sniffed from the network traffic, and the
source/destination IP/data-link address information is parsed from the IP/ARP
encapsulated packets. A MySQL database holds the “cache” of ARP/IMAC address pairs,
updating the information for an IP address every time that a new or changed MAC
address appears. Upon new |IP address entries, or changed MAC address entries, the
ARPMonitor generates and sends an IDMEF-formatted alert to a specified IP
address/port for further processing.

20.3 Example ARPMonitor Alert

Here is an example of a “changed MAC address’ adert that is generated and sent by the
ARPMonitor:

<IDMEF-Message version="1.0">
<Alert ident="dlert_id_001">
<Anadyzer analyzerid="anayzer_id_001"/>
<CreateTime ntpstamp="0xc24132eb.0xdb5caf2d">2003-04

11T12:26:19Z</CreateTime>
<Source>
<Node>
<Address category="ipv4-addr">
<address>195.64.85.69</address>
</Address>

<Address ident="0ld mac address" category="mac">
<address>0:4:76:dd: 31:38</address>
</Address>
<Address ident="new mac address" category="mac">
<address>0:4:76:dd: 31:38</address>
</Address>
</Node>
</Source>
<Target>
<Node>
<Address category="ipv4-addr">
<address>195.64.85.69</address>
</Address>
</Node>
</Target>
<Classification>
<name>Arpmonitor</name>
<url> <furl>
</Classification>
<Additional Data type="string" meaning="old timestamp">
"Friday, April 4, 2003 11:33:42 +0200"
</Additiona Data>
<AdditionalData type="string" meaning="new timestamp">

Melanie Rose Rieback (1113410) Page53 of 117

TheMeta-Alert Correlation Engine (MACE)

"Friday, April 4, 2003 11:33:42 +0200"
</Additional Data>
</Alert>
</IDMEF-Message>

21. Bandwidth Monitor

21.1 Tool Design

The bandwidth monitor is a tool that measures the bandwidth on a network, split out per

source/destination port or IP address. The tool uses the libpcap library to sniff packets
from the detected (or specified) network interface, until a SIGALM is activated, after a
specified number of seconds. The bandwidth monitor can then be periodicaly activated

by a cron script, alowing the bandwidth monitor to sniff traffic in certain time intervals,
(ex. 60 seconds every 10 minutes). This feature is intended to decrease the load demand

of the bandwidth monitor while running on a network.

The sniffed packet statistics are then sent to a centralized database, using the MACE
MySQL API, where they are statistically aralyzed to detect anomalous bandwidth
activity (See next section.) Any suspicious bandwidth activity will generate an IDMEF

formatted aert, which will be send to MACE for further processing.

21.2 Limit-Based Bandwidth Analysis

I have not implemented this part of the tool yet, but | have collected some requirements
about how this part of the tool will work. Alerts will be generated in the following
situations:

unknown |IP addresses generate load to/from a server, in excess of a maximum
[imit (limit configurable)

known |IP addresses generate too much load on a server, in excess of a maximum
limit (limit configurable)

known IP addresses generate load at certain time intervals, where so much
activity is unexpected (time interval / bandwidth limits configurable).

The tool should read destination and source ip addresses out of a configuration file,

together with values that specify how much data per minute is acceptable over a specified
time interval. The tool should constantly run on the network, so as not b give fase

negatives.

This “limit-based” bandwidth analysis would be most useful on networks that are time-
senditive (i.e. traffic is much lower outside of office hours.)

Melanie Rose Rieback (1113410) Page 54 of 117

TheMeta-Alert Correlation Engine (MACE)

[The requirements for this tool were gathered by speaking with Erwin Fok, SOC Operator
with Fox-1T.]

21.3 Statistical Bandwidth Analysis

This part of the tool has aso not been implemented yet. However, the following chapter
describes some of the statistical techniques that | intend to use when | do implement it.

The first step in statistically analyzing data is determining a baseline of “normal” activity,
that new network activity can be compared to. In order to establish this baseline, we
must be confident that the sample size is large enough to reflect a desired level of
accuracy, and that our baseline pattern is distinct enough to serve as a tool for
comparison. We can determine these that these conditions are true by calculating

“confidence intervals’.[23]

Confidence intervals are calculated in the following manner:

Calculate the standard deviation of the data This can be calculated using the
following formula:[24]

r@-r)
N

The genera form of a confidence interval, also called a Zinterval (for given
confidence level C) is represented by the formula[24]

X +27Val ues—

N

The Zvalue corresponds to a desired confidence percentage, that can be found in a
Z-Table, such as the following:[24]

Confidence| C | Z Value
W% 9| 1.645
B 95 1.96
9P 99| 2575

In this manner, we can calculate whether our baseline is reliable within statistically
“confident” limits.

Upon establishing a statistical baseline, we can then generate alerts based upon deviations
from this baseline, as determined by user specific bandwidth deviation limits (also to be
stored in afile).

Melanie Rose Rieback (1113410) Page55 of 117

TheMeta-Alert Correlation Engine (MACE)

Part VII - Metaalert Algorithms

22. Overview

The following sections in this chapter discuss some of the meta-alert correlation
agorithms that are used within the CLIPS Engine of the MetaAlert Correlation Engine.

23. Data Structures

23.1 Introduction to Deftemplates

The CLIPS Expert System offers a construction called a define template, or deftemplate
for short, that aids in writing rules for facts that have pre-defined structures.
Deftemplates are similar to dructs available in several highlevel programming
languages. Deftemplates contain lists of known fields, aso known as “dlots’, that have a
preassigned field name, a data type, and a place to hold single or multiple data values (in
“multislots’).[28]

The CLIPS Engine of the Meta-Alert Correlation Engine heavily uses deftemplates to
represent the major data structures that are used to hold the Intrusion Detection and and
monitored systems' information.

23.2 IDMEF Alert Templates

Intrusion Detection alerts are logicaly represented within CLIPS by a series of
deftemplates, that provide a template to represent the various hierarchies of IDMEF
information. Hereis an example CLIPS deftemplate for the top-level IDMEF message:

(deftenpl ate idmef_nmessage
"Define a tenplate for hol di ng | DMEF nessage infornation"

(slot md ; The netaalert ID

(type STRI NG

(default "UNKNOWN')) ; Sets the value to "UNKNOWN', if none is
; provided

(sl ot index ; The netaalert index #

(type STRING

(default "UNKNOWN')) ; Sets the value to "UNKNOM", if none is
; provided

(sl ot version ; | DVEF nessage version nunber

(type STRING

(default "UNKNOWN')) ; Sets the value to "UNKNOWN', if none is
; provided

(multislot Alert ; Indices of Alerts contained within this |DVEF
; message

(type STRI NG

(default "UNKNOWN')) ; Sets the value to "UNKNOMW', if none is
; provided

Melanie Rose Rieback (1113410) Page 56 of 117

TheMeta-Alert Correlation Engine (MACE)

(multislot Heartbeat ; Indices of Heartbeats contained within this
; | DMEF message

(type STRI NG

(default "UNKNOWN'))) ; Sets the value to "UNKNOWN', if none is
; provided

The idmef _message deftemplate contains a number of slots: mid, index, version, Alert,
and Heartbeat. These dots are responsible for holding the various pieces of information
from the IDS alerts, after they are parsed out of the IDMEF-format aerts

There are also deftemplates that represent the following IDMEF entities in CLIPS:

idmef address, idmef _time, idmef classification, idmef userid, idmef user,
idmef_snmp_service, idmef_webservice, idmef_service, idmef_process, idmef_node,
idmef_fileaccess, idmef_linkage, idmef_inode, idmef_file, idmef_filelist, idmef_source,
idmef_target, idmef_impact, idmef_action, idmef_confidence, idmef_assessment,
idmef_alertident, idmef_additionaldata, idmef_analyzer, idmef_toolaert,
idmef_overflowalert, idmef_correlationalert, idmef_alert, and idmef _heartbest.

An example IDMEF Object could be asserted in the CLIPS as follows:

(assert
(idmef _node (md "2-129941") (index "1") (ident "UNKNOMN') (category

"UNKNOVWN"') (Il ocation "UNKNOMAN') (name "unknown: bge0") (Address

" UNKNOWN'"))

dmef _anal yzer (mid "2-129941") (index "2") (analyzerid "2")

(manufacturer "UNKNOWN') (nodel "UNKNOAN') (version "UNKNOAN")

(class "snort") (ostype "UNKNOMN') (osversion "UNKNOMA') (Node "1")

(Process "UNKNOAN'))

dref _time (md "2-129941") (index "3") (ntpstanp "0xc29af37f.0x0")

(datetine "2003-06-18T14: 19:43Z") (unix_tinmestanp 1055945983))

dmef _time (mid "2-129941") (index "4") (ntpstanp "0xcla48805. 0x0")

(datetime "2002-12-13T16:23:33Z") (unix_tinmestanp 1039796613))

dnef _address (mid "2-129941") (index "5") (ident "UNKNOM')

(category "UNKNOMWN') (vlan_name "UNKNOWN') (vl an_num " UNKNOAN")

(address "217.83.14.216") (netmask "UNKNOMW"))

dnmef _node (mid "2-129941") (index "6") (ident "UNKNOW') (category

"UNKNOWN"') (| ocation "UNKNOAN') (nanme "UNKNOWN') (Address "5"))

dnef _service (md "2-129941") (index "7") (ident "UNKNOMAN') (nane

"UNKNOWN') (port "1027") (portlist "UNKNOMAN') (protocol "tcp")

(Webservice "UNKNOWN') (Snnpservice "UNKNOW"))

dnef _source (mid "2-129941") (index "8") (ident "UNKNOMW') (spoofed

"UNKNOWN') (interface "bge0") (Node "6") (User "UNKNOAN') (Process

"UNKNOWN') (Service "7"))

(idmef_address (md "2-129941") (index "9") (i dent "UNKNOMN')
(category "UNKNOWN') (vlan_name "UNKNOWN') (vl an_num " UNKNOAN")
(address "130.161.180.142") (netmask "UNKNOW'))

(i dmef _node (md "2-129941") (index "10") (ident " UNKNOWN")
(category "UNKNOWN') (location "UNKNOWN') (nanme "UNKNOWN') (Address
"9"))

(idmef_service (md "2-129941") (index "11") (ident "UNKNOM"') (name

(

(
(
(

(
(

(

Melanie Rose Rieback (1113410) Page57 of 117

TheMeta-Alert Correlation Engine (MACE)

"UNKNOWN') (port "1080") (portlist "UNKNOAN') (protocol "tcp")
(Webservice "UNKNOWN') (Snnpservice "UNKNOAN"))

(idmef _target (md "2-129941") (index "12") (ident "UNKNOWN') (decoy
"UNKNOVWN') (interface "bge0") (Node "10") (User "UNKNOM') (Process
"UNKNOWN"') (Service "11") (Filelist "UNKNOAN"))

(idmef_classification (md "2-129941") (index "13") (origin "vendor-
specific") (name "SCAN SOCKS Proxy attenpt") (url "615"))

(idmef _additionaldata (md "2-129941") (index "14") (type "string")
(meani ng "Packet Payl oad") (data "NULL"))

(idmef_alert (md "2-129941") (index "15") (ident"129941") (Analyzer
"2") (Createtine "3") (Detecttinme "4") (Analyzertinme "UNKNOMN')
(Source "8") (Target "12") (Classification "13") (Assessnent
"UNKNOWN') (Correlationalert "UNKNOAN') (Tool al ert "UNKNOAN")
(Overflowal ert "UNKNOWN') (Additional data "14"))

(idmef_nessage (mid "2-129941") (index "16") (version "1.0") (Alert
"15") (Heartbeat "UNKNOM'))

)

Please note that it is not required to specify values for al of the dots when asserting a
fact that uses a deftemplate. The value “UNKNOWN?”, in this case, is used as a default
when values are not explicitly provided.

23.3 System Info Template

Computer systems to be monitored are logicaly represented by the following “system
info” deftemplate:

(deftenpl ate systeminfo
"Define a default tenplate for holding our systenms infornmation"

(slot ny-ip-address ; P address for this machine
(type STRING)
(default "N A")) ; Sets the value to "N A", if none is
; provided
(multislot my-operating-system ; Operating systemtypes in use
(type STRING
(default "N A")) ; Sets the value to "N A", if none is
;. provided
(multislot my-services ; The types of services avail able
(type STRI NG
(default "N A"))) ; Sets the value to "N A", if none is
; provided

The systemrinfo deftemplate contains the following of dots. my-ip-address, my-
operating-system, and my-services. Note that my-services is actually a multislot, which

means that multiple services can be stored in the template for one computer system.

A “systemrinfo” fact can be asserted in the system as follows:

(assert (systeminfo (ny-ip-address "2191646306") (ny-operating-system
"W ndows 2000") (my-services "Quicktime 5.02" "Powerftp 2.24")))

Melanie Rose Rieback (1113410) Page58 of 117

TheMeta-Alert Correlation Engine (MACE)

24. Attack / Vulnerability Correlation
24.1 Initial Alert Generation Rules

The MetaAlert Correlation Engine uses a series of if-then expert system rules to
transform the “systemrinfo” facts and the incoming “attack” facts, into a meaningful alert
that indicated that the targeted system might be vulnerable to the detected attack.

In designing these Expert System rules, | am trying to build something as generic as
possible, that can work with several brands and types of IDS derts. Therefore, | have
some aert generation rules that deal with conversions between generic and IDS-specific
formats.

First, a rule is needed so that every time a new IDMEF alert appears in the system, an
attack-specific correlation fact will be generated. Thisfact is defined as follows:

Every tinme that an | DVEF al ert appears in the system assert an
attack-specific correlation fact for it

(defrul e assert-attack-specific-fact
(assert-attack-specific-fact ?nmy_mid)
(idnmef_classification (md ?my_mid) (url ?attacktype))
(idmef _analyzer (md ?nmy_mid) (class ?nmy_cl ass))
=>
(assert (attack-sig ?ny_class ?attacktype ?ny_mid))

)

24.2 Alert Conversion Rules

Once an IDS-specific alert is present in the Expert System, we want to convert it from a
proprietary format to a more general one. Intrusion Detection Systems use identifiers to
identify the type and class of attacks. There are also a few alert repositories, namely

Bugtrag and CVE/CAN, that attempt to standardize attack ids, enabling free and
commercia IDS systems to use a common language in describing intrusive events.

The Meta-Alert Correlation System uses a body of alert conversion rules to convert
between several proprietary and standardized alert id values. The objective is to

ultimately convert every aert id to an IDSS X-Force id, since MACE uses their
comprehensive list of attacks/vulnerabilities to perform the final vulnerability correlation.

(See section 24.3.)
24.2.1 Bugtraq Conversion Rules

Bugtrag is one of the best known repositories of IDS alert information. Conversion rules
are pulled directly from the website, which is shown in Figure 23.

Melanie Rose Rieback (1113410) Page59 of 117

TheMeta-Alert Correlation Engine (MACE)

2| - TE |
e DE e Preb Teh b [|
bt v o 0 A A Bk Giteots Deen F e oh B 5 R
ek [Py e, st e ot e |
ST ——-ﬂ" -‘mm'r\q?r] -:]
¥ Wk
KDE E-Fa Bl C etk nlesali ity s Tids
T N R TR N =El
LI

bugtraa sl 3m0 25

ot

diaas i gin 4a ielation Bemar

e GENEIC-F-HIHATEH

W [L

sl 2

1
18

:]
S @ 1
me] 08 5| Eire i resed | Miben e b | gimeam - non [[Frenarraaen LS e

Figure 23— Bugtrag Database Screenshot

Scripts automatically generate CLIPS rules that can convert to/from Bugtrag ids. A
sample rule is shown below:

(defrul e convert - bugtraqg- bi d- 300
(attack-sig "bugtraq" "bid300" ?nid)
=>
(assert
(attack-sig "xforce" "xforce2265" ?m d)
)

)
24.2.2 CVE/CAN Conversion Rules

CVE/CAN is another one of the most widely used and respected repositories of 1DS aert
information. A screenshot of the website is shown in Figure 24.

Scripts automatically generate CLIPS rules that can convert to/ffrom CVE/CAN ids. A
sample rule is shown below:

(defrul e convert - cve- CAN- 2001- 0466
(attack-sig "cve" "CAN-2001-0466" ?m d)
=>
(assert

(attack-sig "xforce" "xforce6319" ?m d)
)
)

Melanie Rose Rieback (1113410) Page 60 of 117

TheMeta-Alert Correlation Engine (MACE)

& TTEN Add, g wwrs arawal Farnadt [eemed Toglvars paewied by T |1 T 17 Teprsts e, T
P DR e Powbo Tk b

el L I B 5~ B Ll BB ST . B -

m-uh,rm v Bl o b T G Wit AL SR - £| % | Lk

&L Emmmmlmm:m!mﬂ_uuia,mm

Ty LA H..-l-.

CAN-2001-0466 (under review)

This s & gandidate Tor inclusion in e CWVE Hist, which stamdaidipes naimes Tor sscuiily
probleims, Tt must e reviewsd and scceplied by the CVE Editorinl Board BaTore it can bs sdodsd
inba CWE. Therelore, ths candidale inay be fodilled oF even mejected in the Tulume

Wy CaH -2] <0465 [undler raeeral

il rera By i el sspst 267 &R TS TN AILACCEME Ta e ad ATy e vie & (oot docs n the Tle

BT TRESD: SO0 10R0 B revw ey
FEfEances UEL: hikm: Firvare. & b wmgro ooy T b Ughr ssfier= 5 TIL TETDTA R

Froys Fropased ¢ En0 0]

Tiar
Mote -“‘P'\f i el 0 Sy for the comremvence Of B reager 1o Fen SN g Bt et s The
T r-—-F"l--'-'i-'."-M [l Ry e
A
il e W [l
W] 8 G5 Eircies norese | Biren o de | @B em oo non [[Fraesmes s Ml e@E e

Figure 24— CVE/CAN Database Screenshot
24.2.3 Snort Conversion Rules

Snort is a very commonly used opentsource Intrusion Detection system. It maintains its
own repository of rules, as shown in Figure 25.

Scripts automatically generate CLIPS rules that can convert to/from Snort ids. A sample
rule is shown below:

(defrule convert-snort-sid-1106
(attack-sig "snort" "sidl106" ?m d)
=>
(assert
(attack-sig "bugtraq" "bidl431" ?m d)
(attack-sig "cve" "CAN 2000-0590" ?m d)

Melanie Rose Rieback (1113410) Page61 of 117

TheMeta-Alert Correlation Engine (MACE)

4 b Fows 17 Pmererss 17 [raprrinfon

| Bk ¥ -Mm kb ﬂlﬁt '!.:!ﬁ-ﬂ.-laa

ko | ity ot 1ot b Yol 1 | e i
Thee Opeen Samror Network Intrasion Dietecfion Sysiem
SanMartySprsk | e gt Db .
|y wllae g wevead — ‘aad
Ik ook pega EEEE | b BB
T B o 157 B tdenage | et |
erssimciiors "'hb': TR mesrags |HETBICE SME trans2apes b oerlbesr iyt
| o | Rigmanwrs | aerticp EENTERAL VIET argr - THORE HET 137 (rrg HETENE EWE warabiopan
s i bulfer cocdaw atmnp . Sawebs_semes cxisblebed. cogent ' 00, ot [; depih |, contad @
e] 5344 23 FI[, olfierd deph) contear 100 197, ofEerdl, depdid.
e | Tate_po = 1024 M rebgm bk peflereacecve, CAH-200E-0001
|u W referers e wil wnerar dgiaidefinee netlsh Sndnsare s TE-1 013 2, classivpe sbergied -adm
Ot thie Lokt cowrw e wbas | ad 210 revdy
o Earrie . | Bunimmry A bofer overd v pwsts o B Sk @l el g chamg b Bt ko o s renea =
R TS atfaciar b gEn ract prisinger oo the gt ke This sler ie gwrsrates wh e an sHackesr oee 8
Tefrrraicn a hewr ba mu-pwwl.n-npuh.mnun
why b Imparn | An stacksr can caace the et ryote esag Sanka to assrlor 8 bfler pres g de
[Leamlesria attarker with ot privlogms
:::E‘!'h-d‘dh:: Denud sl ||upnubhlcuJnmmmwlr\-mlahﬁlmlﬂnwnluuxulmthu:h\g
% st | | lnfermatian | doty prestar than 100 byber to the vansbis prome . Thir efammsbon @ copisd by oot foacton
conmg the buffor oreerflowr. e cood Byrdome: Samba wormone 23 5 ko £ 2 B REdsod iotdm
< Madbig 1 e, bk o an e e by) 9E, ek ey oot o amaskins g e el
Duicarmeer abeut sxcrt | el
1&&“ BT =
& reirdecd pig bovers | Sonmuriy | T KB reehl b poged e o vakes Tigar fumn 100H s
it begrbur b dseenr | -
| et Bk o ot o oot st smes 2l
(1] B T T i
im0 5 || Eirtes ot | et o | g e -y [e oy - erna_ 1w

Figure 25— Snort Database Screenshot

24.2.4 Whitehats Conversion Rules

Whitehats (also called arachNIDS) is another publicly maintained IDS aert repository.
A screenshot of the website is shown in Figure 26.

Flra 17 Farrvpen [T Pupeciis by,

arachHIDS - The Irtnemion Ewent Cabebeme
afipcivd

Rramw by proupre clesa st e

“Gwunt | Protocol’| Ressacch) Signatures|
05412 "HTTP-CEHMAGEMAP-OVERFLOW

=
Bainncy Folicy

P T
b 1 Al

[Enrrere| Flatwrasp s s

Thap vk o ien o e ok bn gopiod @ reeole bafer @ nrfiony Labagary. wak oy

kmrak Aty b tha Ve el DO pregrars on e OmrahTTR meb Clncohieaban % s, brsg ey o

il Ik vt me ok Aot s
Uiym Speciic] e Pt ST 5]

Thiy arvgrt i3 Jparf b 5 sulewwsd Br, B perrd by g rerskch

124wl pdtbh & .;nu.uunudu::u exumk o gclE SILE prsirn

ek s ik sl

Fee
freares Inzinmm
Eartiraa Tani

The pachri thak oanped tha evvard i roemealin 5 0t o ae sstabinbed TOP spasion; indicelieg thk e souroe [P sddrem b ot
ety g il F plad R ol B P AR B el e b, W B Pt Ak ekl 0 JRRANE NA VR ol 5
WK":- W‘IW(—‘WH"!W"{“’" A P e OF TR R AR ke BE (1 HE F WSS R R T e 18

» oF thin wvn e ahadkar dowa ot el iy erca N e In ewai caee e e that the sve s phoukd
Mllhﬂ.lll SR AR AT dn BT GBS BaFETE WIS A M A AN

e
[LEET T T T

T e
T

=]
et 20 5| Dtk et | M i | e s [e
Figure 26 — Whitehats Database Scr eenshat

Scripts automatically generate CLIPS rules that can convert to/from Whitehats ids. A
sample rule is shown below:

Melanie Rose Rieback (1113410) Page 62 of 117

TheMeta-Alert Correlation Engine (MACE)

(defrul e convert-whitehats-1DS 412

(attack-sig "whitehats" "I1DS412" ?m d)

=>

(assert
(attack-sig "cve" "CVE-1999-0951" ?nid)
(attack-sig "advl CE" "advl CE2002564" ?m d)

)

)

24.3 Vulnerability Conversion Rules

The X-Force Database is a commercial IDS aert repository, maintained by Internet
Security Systems (ISS). A screenshot of the X-Force website is shown in Figure 27.

53 Ly e Fudekiar: U ol rossbl I e ey rspresed €1 TRTg HALpsd sed s fifpn] ~isd - Hnreoal) biemed Bplerrn e
Mo BN Soe Fowbs Tk Heo

bt - o E A D (Wt s 3 G- - B

mml‘-—_,}-ﬂl.l'-.'\.ni:-‘h’ﬁml. bl i i

il [i el
W] 8 5| it - reset | Eiten i | g evm en-nom [[Eierarce tate Bl e@S aer

Figure 27— X-For ce Database Screenshot

The X-Force database is the find step of the IDS aert converson. The Meta-Alert
Correlation Engine uses the XForce dert ids to perform the vulnerability correlation
because after a lengthy investigation, the X-Force database has proven to have the most
detailed and complete lists of attack types vs. affected platform/services.

Scripts parse data directly taken from the X-Force website, and automatically generate
CLIPS rules that can convert between X-Force id's and vulnerable platforms and
services. A sample rule is shown below:

(defrul e define-vul ns-xforce-10056
(attack-sig "xforce" "xforcel0056" ?m d)
=>
(assert

Melanie Rose Rieback (1113410) Page 63 of 117

TheMeta-Alert Correlation Engine (MACE)

(vul nerabl e "Amavis Virus Scanner 0.2.1-r2 and earlier"
"xforcelO0056" ?n d)

(vul nerabl e "Linux Any version" "xforcel0056" ?m d)

(vul nerabl e "Uni x Any version" "xforcel0056" ?m d)

)
)

24.4 Aggregation Conversion Rules

The Meta-Alert Correlation System also requires a ruleset to convert between
“aggregated” platform/service descriptions, and single platform/service descriptions (as
would be used in the systeminfo facts). Two sample rules are shown below:

(defrul e aggregate-vul nerabilities-Kazaa- Any- Version
(vul nerabl e "Kazaa Any version" ?md)
=>
(assert
(vul nerabl e "Kazaa 1.3" ?m d)
(vul nerabl e "Kazaa 1.7.1" ?m d)
(vul nerabl e "Kazaa 2.0.2" ?md)

)
)

(defrul e aggregate-vul nerabilities-Cvs-1-11-4-and-earlier
(vulnerable "Cvs 1.11.4 and earlier"” ?md)
=>
(assert
(vul nerable "Cvs 1.10.8" ?mid)
(vul nerable "Cvs 1.11" ?m d)
(vul nerable "Cvs prior to 1.10.7-9" ?md)
)
)

These rules are important, because if the X-Force Database determines that “Kazaa Any
version” is vulnerable, the computers running Kazaa versions 1.3, 1.7.1, and 2.0.2 al
need to be considered for a potential meta-alert.

These rules (especiadly aggregations using “and earlier”, “and later”, etc..) are more
difficult to automatically generate with scripts than the other rules because it requires an
ever-growing list of which versions of various platforms/services are available, as well as
because the naming and capitalization tends to be much less consistent within the various
alerts. Improvements in this situation would unfortunately probably require an effort to
standard ze the terminology and capitalization used by the X-Force website itself.

24.5 Metaalert Generation Rules

24.5.1 Target Comparison Rules

Melanie Rose Rieback (1113410) Page 64 of 117

TheMeta-Alert Correlation Engine (MACE)

Once a particular attack has been converted to a list of potentially affected
platforms/services, the target computer must be checked to see if it is running any of the

potentially vulnerable platforms and/or services. The two CLIPS rules below
demonstrate how this target platform/service comparison is done:

Platform specific attack is targeting one of our nonitored conputers
(defrule ny-platform attacked
(systeminfo (my-operating-system $?osbefore ?ny0OS $?osafter) (my-ip-
address ?i p_addr))
(vul nerabl e ?myOS ?mi d_val ue)
(idmef _address (mid ?md_value) (index ?address_index) (address
?i p_addr))
(idmef _node (md ?m d_val ue) (index ?node_i ndex) (Address
?addr ess_i ndex))
(idmef_target (md ?nmid_value) (Node ?node_i ndex))
=>
(assert (generate-netaalert-for-md ?nid_val ue))

Service specific attack is targeting one of our nonitored conputers
(defrul e ny-service-attacked
(systeminfo (my-services $?servbefore ?Servval $?servafter) (ny-ip-
address ?i p_addr))
(vul nerabl e ?myServ ?m d_val ue)
(test (neq (str-index (lowase ?nyServ) (lowcase ?ServVal)) FALSE))
(idmef _address (md ?m d_value) (index ?address_index) (address
?i p_addr))
(idmef _node (md ?mid_val ue) (index ?node_i ndex) (Address
?addr ess_i ndex))
(idmef_target (md ?nmid_val ue) (Node ?node_i ndex))
=>
(assert (generate-netaalert-for-md ?nmd_val ue))

)

Note that the platform rule checks for exact platform type matches (ex. Windows 95)
while the service rule checks for the existence of the service as a substring in the attack
type (ex. The string “ftp” in “Ws _FTP Server 3.1.1""). If the potentialy vulnerade
platform/service is found on the target, than a metaalert will be generated for that
particular IDMEF aert.

24.5.2 Metaalert Generation Rules

Metaderts are actually generated within MACE (i.e. read by the CLIPS Parser, encoded
in IDMEF format, and sent to the Metaalert Database), when the line of CLIPS output is
preceded by the word “Metaalert”. This means that the final Metaalert generation rules,
triggered upon some discovered or newly-generated fact in the system, produce a line of
output that will activate the CLIPS Parser. A metaalert generation rule for an IDMEF
message is shown below:

Melanie Rose Rieback (1113410) Page 65 of 117

TheMeta-Alert Correlation Engine (MACE)

;; Rule to print out an idnef-nmessage, given the md

(defrule print-idmef-nmessage-using-m d
?control -fact <- (print-message-with-md ?arg_nid)
(i dmef _message (md ?arg_mid) (version ?arg_version) (Alert $?alerts)
(Heartbeat $?heartbeats))
=>
; Retract the control fact that activated this rule
(retract ?control-fact)

;. Print out the XM. Header information

(printout t "<?xm version=\"1.0\"?>")

(printout t "<!DOCTYPE | DVEF-Message PUBLIC \"-//1ETF/ / DTD RFC XXXX
I DVEF v1.0//EN" \"\">"

; Print out an inital statenent
(printout t "<IDMEF-Message")

; Print out the | DMEF Message Version nunber
(if (neq ?arg_version "UNKNO/N")
t hen
(printout t

version=\"" ?arg_version "\""))

; Print out a closing tag
(printout t ">")

; Assert a fact that will cause a final idnef-nessage tag to be
; generat ed
(assert (generate-idnmef-nmessage-end-tag))

; Print out each of the heartbeats
(loop-for-count (?cnt 1 (length$?heartbeats)) do
(if (neq (nth$?cnt ?heartbeats) "UNKNOMN")

t hen
(assert (print-heartbeat-with-md ?arg md (nth$?cnt
?heartbeats)))))

; Print out each of the alerts
(loop-for-count (?cnt 1 (length$?alerts)) do
(if (neq (nth$?cnt ?alerts) "UNKNOMAN')
t hen
(assert (print-alert-with-mid ?arg md (nth$?cnt ?alerts))))))

The meta-alert is generated when afact like this is asserted into the system:

(print-message-with-md "2-129941")

24.6 Example

Let’s assume that we have 20 systems that we are monitoring and several alerts flying by
per second. It's tough for the administrator to keep tabs on everything, so he uses his
knowledge of the network (and perhaps aso nessusnmap) to create a list of operating

Melanie Rose Rieback (1113410) Page 66 of 117

TheMeta-Alert Correlation Engine (MACE)

systems and services running per computer. Among the other computers, one of them is
a Windows 2000 machine, running Ws FTP, Zone Alarm 3.0, and a Socks Proxy Server.

This information is represented in CLIPS as following:

CLI PS> (assert (systeminfo (ny-ip-address "130.161.180.142") (nmny-
operating-system "W ndows 2000 Professional") (my-services "Ws_FTP
Server 3.1.1" "Zonealarm Pro 3.0" "Socks 5-v1.0r10")))

Alerts are read out of the Snort database that is attached to the network, and the following
alert appears:

CLI PS> (assert

(idmef _node (md "2-129941") (index "1") (ident "UNKNOAN') (category
"UNKNOWN') (1 ocation "UNKNOMN') (name "ep0Q") (Address
" UNKNOWN'"))
drmef _anal yzer (mid "2-129941") (index "2") (analyzerid "2")
(manufacturer "UNKNOWN') (nodel "UNKNOWN') (version "UNKNOAN")
(class "snort") (ostype "UNKNOAN') (osversion "UNKNOMAN') (Node "1")
(Process "UNKNOWN'))

(

(idmef _time (md "2-129941") (index "3") (ntpstanp "0Oxc29af 37f.0x0")
(datetime "2003-06-18T14:19:43Z2") (unix_timestanp 1055945983))

(idmef_tine (md "2-129941") (index "4") (ntpstanp "0Oxcla48805.0x0")
(datetinme "2002-12-13T16:23:33Z2") (unix_tinmestanp 1039796613))

(idmef_address (md "2-129941") (index "5") (ident "UNKNOMN")
(category "UNKNOWN') (vlan_nanme "UNKNOWN') (vl an_num " UNKNOAN")
(address "217.83.14.216") (netmask "UNKNOMN"))

(idmef _node (mid "2-129941") (index "6") (ident "UNKNOW') (category
"UNKNOWN') (location "UNKNOWN') (nane "UNKNOWN') (Address "5"))

(idmef_service (md "2-129941") (index "7") (ident "UNKNOMW') (nane
"UNKNOWN') (port "1027") (portlist "UNKNOAN') (protocol "tcp")
(Webservice "UNKNOWN') (Snnpservice "UNKNOAN"))

(idmef _source (md "2-129941") (index "8") (ident "UNKNOM') (spoofed
"UNKNOWN') (interface "bge0") (Node "6") (User "UNKNOWN') (Process
"UNKNOWN') (Service "7"))

(idmef_address (md "2-129941") (index "9") (ident "UNKNOMN")
(category "UNKNOWN') (vl an_nanme "UNKNOWN') (vl an_num " UNKNOAN")
(address "130.161.180.142") (netmask "UNKNOW'))

(i dmef _node (md "2-129941") (index "10") (ident " UNKNOWN")
(category "UNKNOWN') (Il ocation "UNKNOAN') (nane "UNKNOWN') (Address
" g

(idrrez)_servi ce (md "2-129941") (index "11") (ident "UNKNOW') (name
"UNKNOWN') (port "1080") (portlist "UNKNOAN') (protocol "tcp")
(Webservice "UNKNOWN') (Snnpservice "UNKNOMAN"))

(idmef _target (md "2-129941") (index "12") (ident "UNKNOW') (decoy
"UNKNOVWN"') (interface "bge0") (Node "10") (User "UNKNOMW') (Process
"UNKNOWN"') (Service "11") (Filelist "UNKNOAN"))

(idmef_classification (md "2-129941") (index "13") (origin "vendor-

specific") (name "SCAN SOCKS Proxy attenpt") (url "615"))

(idmef _additionaldata (md "2-129941") (index "14") (type "string")
(meani ng "Packet Payl oad") (data "NULL"))
(idmef_alert (md "2-129941") (index "15") (ident"129941") (Analyzer

"2") (Createtime "3") (Detecttinme "4") (Analyzertine "UNKNOMW'")
(Source "8") (Target "12") (Classification "13") (Assessnent
"UNKNOWN') (Correlationalert "UNKNOAN') (Tool al ert "UNKNOAN")
(Overflowal ert "UNKNOWN') (Additional data "14"))

(idmef _nessage (mid "2-129941") (index "16") (version "1.0") (Alert

Melanie Rose Rieback (1113410) Page 67 of 117

TheMeta-Alert Correlation Engine (MACE)

"15") (Heartbeat "UNKNOWN'))

CLIPS produces the output:

Met aal ert: <?xml version="1.0"?><! DOCTYPE | DVMEF- Message PUBLIC "-

/11 ETF/ / DTD RFC XXXX | DMEF v1.0//EN' ""><| DMEF- Message
version="1.0"><Al ert ident="129941"><Anal yzer anal yzerid="2"

cl ass="snort" ><Node><nane>unknown: bge0</ name></ Node></ Anal yzer ><Creat eT
i me ntpstanp="0xc29af 37f. 0x0">2003-06-

18T14: 19: 43Z</ Cr eat eTi me><Det ect Ti me nt pst anp="0xc1a48805. 0x0" >2002- 12-
13T16: 23: 33Z</ Det ect Ti ne><Sour ce

i nterface="bge0" ><Node><Addr ess><addr ess>217. 83. 14. 216</ addr ess></ Addr e
ss></ Node><Ser vi ce><port >1027</ port ><pr ot ocol >t cp</ pr ot ocol ></ Servi ce><
/ Sour ce><Tar get

i nterface="bge0" ><Node><Addr ess><addr ess>130. 161. 180. 142</ addr ess></ Add
ress></ Node><Ser vi ce><port >1080</ port ><pr ot ocol >t cp</ pr ot ocol ></ Servi ce
></ Tar get ><Cl assi fication origi n="vendor - speci fi c"><nane>SCAN SOCKS

Proxy attenpt</name><url| >615</url ></ Cl assi fi cati on><Addi ti onal Dat a
type="string" meani ng="Packet
Payl oad" >NULL</ Addi ti onal Dat a></ Al ert ></ | DMEF- Message>

This metaalert is produced because the Socks Proxy service is threatened. The CLIPS
Parser reads this output, and adds the metaalert to the metaaert and/or viewer database.

25. Intermediate Fact Removal

25.1 Analysis of Example

As Meta-Alert Carelation algorithms run, they will produce a tremendous amount of
“intermediate” facts, that represent a transient change in state, while performing the
necessary conversion steps that lead to a metaalert. These extra facts must be removed
from the system to keep the system performance at an optimal level.

If we look back at the example in section 24.6, the automatic vulnerability correlation
produces the following intermediate facts as a new alert appears in the system:

f-4 (attack-sig "snort" "sidl1888" "123")

f-5 (attack-sig "bugtrag" "bid5427" "123")

f-6 (attack-sig "cve" "CAN-2002-0826" "123")

f-7 (attack-sig "xforce" "xforce9794" "123")

f-8 (vul nerabl e "Socks Any version" "xforce9794" "123")

f-9 (vul nerabl e "W ndows 2000 Any version" "xforce9794" "123")
f-10 (vul nerabl e "W ndows NT Any version" "xforce9794" "123")
f-11 (vul nerabl e "W ndows XP" "xforce9794" "123")

f-12 (vul nerabl e "W ndows NT 3.5" "xforce9794" "123")

f-13 (vul nerabl e "W ndows NT 3.51" "xforce9794" "123")

f-14 (vul nerabl e "W ndows NT 4.0" "xforce9794" "123")

f-15 (vul nerabl e "W ndows NT 4.0 Enterprise" "xforce9794" "123")
f-16 (vul nerabl e "W ndows NT 4.0 Option Pack" "xforce9794" "123")

Melanie Rose Rieback (1113410) Page 68 of 117

TheMeta-Alert Correlation Engine (MACE)

f-17 (vul nerabl e "W ndows NT 4.0 SP1" "xforce9794" "123")
f-18 (vul nerabl e "W ndows NT 4.0 SP2" "xforce9794" "123")
f-19 (vul nerabl e "W ndows NT 4.0 SP3" "xforce9794" "123")
f-20 (vul nerabl e "W ndows NT 4.0 SP5" "xforce9794" "123")
f-21 (vul nerabl e "W ndows NT 4.0 SP6" "xforce9794" "123")
f-22 (vul nerabl e "W ndows NT 4.0 SP6a" "xforce9794" "123")
f-23 (vul nerabl e "W ndows NT 4.0 TSE" "xforce9794" "123")
f-24 (vul nerabl e "W ndows NT 4.0 beta" "xforce9794" "123")

f-25 (vul nerabl e "W ndows 2000 Advanced Server" "xforce9794" "123")
f-26 (vul nerabl e "W ndows 2000 Beta" "xforce9794" "123")

f-27 (vul nerabl e "W ndows 2000 Datacenter Server" "xforce9794"
"123")

f-28 (vul nerabl e "W ndows 2000 Professional" "xforce9794" "123")
f-29 (vul nerabl e "W ndows 2000 SP1" "xforce9794" "123")

f-30 (vul nerabl e "W ndows 2000 SP2" "xforce9794" "123")

f-31 (vul nerabl e "W ndows 2000 SP3" "xforce9794" "123")

f-32 (vul nerabl e "W ndows 2000 Server" "xforce9794" "123")
f-33 (vul nerabl e "W ndows 2000 Termi nal Services" "xforce9794"
"123")

f-34 (platform specific-attack "xforce9794" "123")

f-35 (service-specific-attack "xforce9794" "123")

This forward chaining of facts alows us to see the exact mechanism with which the
Vulnerability Correlation algorithm works. However, if these intermediate facts are not
removed from the system after the metadert is produced, it will clutter the CLIPS
Engine, and hurt the performance of the system.

The important question to consider is: if the meta-alert is (or is not) produced, which of
these facts do we want to keep in the system afterwards?

The answer that | suggest is the following: it depends on whether we intend to perform
further correlation with these intermediate facts. If we do not need them anymore, we

delete them immediately.

It's pretty safe to say that we will not be needing the intermediate facts that state the
vulnerable platforms/services (f-8 through f-33), so we can retract these from the system.
We probably also don’t want the attack-sig conversion rules (f-4 through -7) any more,
so we can retract these as well. In most cases, assuming that if we dynamically add new
rules, they are not required to back-correlate with past alerts, we can also remove the
initial alert from the system.

If we decide to further correlate the platform and service-specific-attacks with other
(meta-)alerts, we might keep facts f-34 and f-35 a bit longer in the system. However, the
correlation rules that use the platform- and service- specific attacks as input are then
responsible for removing these facts from the system after using them, so perhaps a
second metaalert will be produced, and then the second set of correlation rules will delete
facts f-34 and f-35 from the system as well.

The mora of the story is that we only keep facts in the system that represent an
intermediate state that might lead to a new meta-aert correlation, but that is still waiting

Melanie Rose Rieback (1113410) Page 69 of 117

TheMeta-Alert Correlation Engine (MACE)

for further necessary input. This is the only way to keep the system state maintainable
when sending a huge number of IDS aerts through, over long periods of time.

25.2 Fact Retraction Rules

Here are the rules that we need to add to perform the intermediate fact retractions from
the last section:

Renove basic attack alerts
(defrul e renove-basic-alerts
(declare (salience -1))
?ba <- (attack)

=>
(retract ?ba))

; Renpve attack-sig correlation alerts
(defrule renove- attack-sig-alerts
(declare (salience -1))
?ba < (attack-sig $?)
=>
(retract ?ba))

; Renpve vulnerability information
(defrule renove-vul nerability-information
(declare (salience -1))
?ba <- (vul nerable $?)
=>
(retract ?ba))

; Renove attacked service information
(defrule renove- att acked- servi ces
(declare (salience -1))
?ba < (attack-service $?)
=>
(retract ?ba))

; Renpve attacked platforminformation
(defrule renove- attacked- pl atforms
(declare (salience -1))

?ba < (attack-platform $?)
=>
(retract ?ba))

Note that these rules have a “salience” level of —1. Salience is the priority value of rules
on the agenda, that determines the order in which the rules will be fired. CLIPS assigns
rules a default salience value of 0, where the possible salience values range from —10,000
to 10,000.[28]

The salience value of —1 assures that the rest of the meta-alert correlations will occur
BEFORE the facts are removed from the system. The salience values of the meta-alert

correlation rules themselves, since we did not define them explicitly, have the default

Melanie Rose Rieback (1113410) Page 70 of 117

TheMeta-Alert Correlation Engine (MACE)

value of 0. Therefore all of the meta-alert correlation rules will be fired first, before the
first rule fires that leads to an intermediate fact being retracted.

26. Portscan Correlation (Alert Counting)

Another example of how CLIPS can be used for correlation is to create Portscan meta-
aerts.

26.1 Simple IP Address Counting

26.1.1 Initial Assertions

The first kind of Portscan correlation that we can perform is automatically looking for a
certain number (or multiple) of alerts originating or targeting a particular 1P address.

This basicaly entails maintaining a count of aerts coming from/to a particular IP
address.

Maintaining the count of source/destination IP addresses begins by asserting a count-ip-
address-src or count-ip-address-dest fact, holding a count of zero, every time that a new
alert enters the system. This occurs using the following rules:

(defrul e count-i p-address-src-new
(idmef _address (mid ?md_value) (index ?address_index) (address
?i p_addr))
(idmef _node (mid ?mid_val ue) (index ?node_i ndex) (Address
?addr ess_i ndex))
(idmef_source (md ?md_value) (Node ?node_i ndex))
=>
(assert (count-ip-address-src ?i p_addr 0)
(control-ip-src ?ip_addr)))

(defrul e count-i p-address-dest-new
(idmef _address (md ?m d_val ue) (index ?address_index) (address

?i p_addr))
(idmef _node (mid ?m d_val ue) (index ?node_i ndex) (Address
?addr ess_i ndex))
(idmef _target (md ?nmid_val ue) (Node ?node_i ndex))
=>
(assert (count-i p-address-dest ?ip_addr 0)
(control -i p-dest ?ip_addr)))

Note that we also assert facts called control-ip-src and control-ip-dest, along with the
count-ip-address- facts. These facts are called “control facts’. Control facts are
intermediate facts that are used solely to enable and disable the firing of rules. In this
case, these control facts are used to keep rules from refiring every time a fact is retracted
that which caused earlier firing of the rule.

Melanie Rose Rieback (1113410) Page 71 of 117

TheMeta-Alert Correlation Engine (MACE)

26.1.2 Counting With Control Facts

If we have two count-ip-address-src/dest facts with the same IP address, we will want to
combine them to reflect the current count. This is achieved by having rules that retract
the original facts (with the lower count value), and reasserting new facts with a count
value one higher than then highest value of the two counts that we are combining. Since
we only want this combination to occur once per newly asserted alert, we aso require the
presence of a control fact as a requirement to fire. After the count combination rule fires
once, the control fact is then asserted.

The following two rules illustrate the use of count combination facts for
source/destination 1P addresses:

(defrul e count-i p-address-src
?count -ip-src <- (count-ip-address-src ?ipsrc ?count)
?count -i p-src2 <- (count-ip-address-src ?ipsrc ?count2&0)
?control -fact <- (control-ip-src ?ipsrc)
=>
(retract ?count-ip-src ?count-ip-src2 ?control -fact)
(assert (count-ip-address-src ?ipsrc (+ 1 (max ?count ?count2)))))

(defrul e count-ip-address-dest
?count -i p-dest <- (count-ip-address-dest ?i pdest ?count)
?count -i p-dest2 < (count-ip-address-dest ?ipdest ?count2&0)
?control -fact <- (control-ip-dest ?ipdest)
=>
(retract ?count-ip-dest ?count-ip-dest2 ?control-fact)
(assert (count-i p-address-dest ?ipdest (+ 1 (max ?count ?count2)))))

26.1.3 Reporting Multiple Attacks

Now that we have facts in the system that keep count of the number of source/destination
IP addresses, we want to produce a meta-alert every time that a desired number of aert
originate from a specified source/destination | P address.

As an example, the following two rules produce meta-alerts every time that 10 attacks
appear from a source/destination |P address.

(count -i p- addr ess- dest ?i pdest ?count)

(test (eq (nmod ?count 10) 0))

=>

(printout t "Metaalert:" ?count " attacks targeting destination IP
address: ")

(printout t 7?ipdest crlf))

(count -i p-address-src ?i psrc ?count)

(test (eq (nmod ?count 10) 0))

=>

(printout t "Metaalert:"” ?count " attacks from source |P address:")
(printout t ?ipsrc crif))

Melanie Rose Rieback (1113410) Page 72 of 117

TheMeta-Alert Correlation Engine (MACE)

26.1.4 Comments

While it is nice to know that CLIPS can be used to maintain such counts of alerts, it is
actually not the most useful feature that MACE has to offer. Because one count fact will
exist in the system per source/destination IP address, this kind of counting will tend to
internaly clutter the system if a reasonable amount of traffic is being monitored.
Additionally, a SOC operator is usually not interested in knowing every 10 times (or 100
times) that an aert appears from a given source/destination IP address. Thisis especially
true when hundreds or thousands of alerts appear in connection with an IP address.
Therefore, this kind of counting is best reserved for keeping tabs on a single IP address of
interest.

26.2 Counting Using Time Intervals

Anocther feature of interest to a SOC operator might be knowing when a given number of
attacks F, target a single 1P address in a specified time interval T. This sort of counting
can be performing using diding time intervals.

26.1.1 Initial Interval Assertion

This kind of counting begins in much the same way as with the simple counting of IP
addresses. We want to assert a count-attack fact every time that an attack enters the
system. Note that no control facts are asserted by these initial assertions, because the

later count combination rules do not fire more than once as the facts are retracted and
reasserted. (See next section.)

Thisinitial assertion is performed by the following rule:

(defrule counttine-attack-aggregation-fact
(idmef _address (md ?m d_val ue) (index ?address_index) (address
?i p_addr))
(idmef _node (md ?m d_val ue) (index ?node_i ndex) (Address
?addr ess_i ndex))
(idmef_target (md ?m d_value) (Node ?node_i ndex))
(idmef _time (md ?md_value) (index ?createtine)(unix_tinmestanp
?ts))
(idnmef _alert (md ?arg md)(Createtime $?ctbefore ?createtine
$?ctafter))
=>
(assert (count-attack ?ip_addr ?ts ?nid_value)))

Once this rule is in the system, we will then want to create an interval fact, that
corresponds to a specific destination IP address, and stores the beginning and ending
timestamps of the adert, dong with the list of dert identifiers that identify aerts falling
into this time interval.

Melanie Rose Rieback (1113410) Page 73 of 117

TheMeta-Alert Correlation Engine (MACE)

This time interval is generated from the initia count-attack fact with the following rule,
that creates intervals from alerts targeting an IP address that occur within 60 seconds of
each other:

(defrule counttine-i p-address-dest-new
?cal <- (count-attack ?ipdest ?ts ?nid)
?ca2 <- (count-attack ?ipdest ?ts2 ?ni d2)
(test (< (- ?ts ?ts2) 60))
(test (>= (- ?ts ?ts2) 0))
(test (neq ?md ?nid2))
=>
(assert (counttine-ip-address-dest ?ipdest ?ts2 ?ts ?md2 ?nmid))
(retract ?cal ?ca2))

We can see that the initia count-attack facts are retracted after the time interval, and that
the timestamps are stored in low/high order in the new interval fact.

26.1.2 Interval Combination

Now that we have the initial time intervals of size 2, we want to combine them into larger
time intervals, when they overlap with other existing time intervals but are still within the
desired timeinterval T.

First, we need a rule that can check, every time that a new aert is asserted, whether is
falls within the two timestamps of an existing counttime set. If thisis the case, it would
need to retract the old counttime set, and assert a new one that includes the new alert
identifier in the set.

This functionality is performed with the following rule:

(defrule counttine-i p-address-dest

(idmef _address (md ?m d_val ue) (index ?address_index) (address
?i p_addr))

(idmef _node (md ?md_value) (index ?node_index) (Address
?addr ess_i ndex))

(idmef _target (md ?nmid_val ue) (Node ?node_i ndex))

(idmef _time (md ?md_value) (index ?createtine)(unix_tinmestanp
?ts3))

(idmef _alert (md ?arg_md)(Createtime $?ctbefore ?createtinme
$?2ctafter))

?ct <- (counttine-ip-address-dest ?ip_addr ?ts2 ?ts $?m ds)

(test (<= ?ts3 ?ts))

(test (>= ?ts3 ?ts2))

(test (eq (menber$?nmid $?m ds) FALSE))

=>

(retract ?ct)

(assert (counttinme-ip-address-dest ?ip_addr ?ts2 ?ts ?nmids ?md)))

26.1.3 Interval Reduction

Melanie Rose Rieback (1113410) Page 74 of 117

TheMeta-Alert Correlation Engine (MACE)

As we execute these rules, we will find that counttime sets will be produced that are exact
subsets of each other. For example, we might see the two sets:

(counttime-i p-address-dest "193.67.146. 17" 1044842787 1044842788 " 2-
97309" "2-97310" "2-97311")

and

(counttime-i p-address-dest "193.67.146.17" 1044842787 1044842788 "2-
97309" "2-97310")

In this case, we will clearly want to remove the second set. We can perform this
reduction with the following rule:

(defrule counttine-i p-address-dest-renpve-subsets
?ct <- (counttinme-ip-address-dest ?ipdest ?ts ?ts2 $?m ds)
?ct2 <- (counttine-ip-address-dest ?ipdest ?ts3 ?ts4 $?m ds2)
(test (neqg ?ct ?ct2))

(test (eq (subsetp $?nmids $?m ds2) TRUE))
=>

(if
(<= (length$?mids) (length$?m ds2))
t hen
(retract ?ct)
el se
(retract ?ct2)
)

Note that i is also a desirable thing to combine and reduce intervals that are not subsets,
but that contain overlapping timestamps, still falling within a total time interval of T.

26.1.4 Generating Metaalerts

Now that we are keeping a record of dliding time intervals for al aerts targeting a
particular destination I1P address, we will want to generate a meta-alert every time that the
desired frequency F is reached within this time interval. We can do this using the
following rule:

(defrule counttine-i p-address-dest-reached-frequency

?ct <- (counttine-ip-address-dest ?ipdest ?ts2 ?ts $?cids)

(test (>= (length$ $?cids) 20))

=>

(retract ?ct)

(printout t "Metaalert: Alerts exceeded frequency threshold:" ?cids
crlif))

26.1.5 Comments

This type of counting is probably more interesting for a SOC operator than the Simple IP
Address Counting that was described earlier. The values of T and F are configurable,

potentially on an IP address basis. However, with this kind of counting, we aso run the

Melanie Rose Rieback (1113410) Page 75 of 117

TheMeta-Alert Correlation Engine (MACE)

risk of cluttering the system with a large amount of count-attack and counttime interval
facts. A good scheme to control this would be to use fact retraction rules to remove the
time intervals, not only as metaaerts are produced, but also as they stay in the system a
certain amount of time without generating a metaalert.

My genera attitude for Portscan detection and aert counting is that it is probably better
to use an external procedura program to do the portscan detection (ex. The Snort
portscan detection preprocessor), and then to send that output to MACE, using IDMEF
for further processing. However, if the SOC operator wants to do it within MACE, it is
possible, although caution much be exercised in implementing the expert system rules to
prevent the CLIPS Engine from becoming too cluttered with partialy-fulfilled
intermediate facts.

Melanie Rose Rieback (1113410) Page 76 of 117

TheMeta-Alert Correlation Engine (MACE)

Part VIIl - Results and Testing

27. Overview

The upcoming section of this report will discuss system-testing of MACE using the
Snort-Hal and DUNET-database data sets. The first section will take a quick look at the
purely technica performance of MACE. Next, there is a dightly more elaborated
description of the two data sets than before, and a discussion ensues detailing some of the
various filtering / correlation techniques and their relative effectiveness. Lastly, we will
look at some disadvantages of the presented correlation techniques.

28. Technical Testing

The following chapter discusses the testing process for some of the purely technical
aspects of the Meta-Alert Correlation Engine.

28.1 Memory Testing

The following section discusses the Meta-Alert Correlation Engine’'s memory usage.

This section, besides providing some memory-usage statistics, also highlights one of the
tools that was used to check and improve MACE’'s memory performance.

28.1.1 Boehm’s Garbage Collector

The primary function of the BoehmDemers-Weiser “garbage collector” is to report
memory objects that were allocated but never dedllocated, and that are no longer
accessable to the program. This works by offering a macro replacement for the C
mallocd/free and C++ new/delete function calls. The garbage collector works differently
from most “counting leak” detectors, whichverify that all allocated objects are eventually
deallocated by process exit time. With the garbage collector, “permanent” data structures
that are used and accessable throughout the program are not reported as “leaks’ and are
not required to be deallocated at the end — a potentially useless activity that often triggers
large amounts of paging. The garbage collector uses the mark-sweep agorithm,
providing incremental and generational collection under OS's with the right kind of
virtual memory support. (Linux/Windows/OpenBSD/etc..)[29]

| am using the Boehm-DemersWeiser conservative garbage checker to check MACE
memory usage, and to find (and fix) memory leaks.

28.1.2 Memory Usage Statistics
MACE, including al of the various components, leaks about .05 M of memory every

second. With 140 M of memory (plus 1024 M of swap memory) in my computer, this
rate of leakage has not yet become a problem for my testing. Once MACE becomes a bit

Melanie Rose Rieback (1113410) Page 77 of 117

TheMeta-Alert Correlation Engine (MACE)

more stable of a program, (that runs in the background for longer @riods of time), | will
go back and tune the memory performance a bit more.

28.2 CPU Utilization

| am developing and testing the Meta-Alert Correlation Engine on a 1U Rackmount Dell
Pentium 3, with a 1 Gig processor, and 6250 Mb internal memory.

The following entry shows a typical *NIX ‘top’ display on this machine when MACE is
correlating the DUNET test data:

processes: 2 running, 42 idle

CPU states: 45.5% user, 18.4%nice, 34.1% system 0.0% i nterrupt,
2.0%idle

Menory: Real : 100M 141M act/tot Free: 106M Swap: 108M 1024M used/t ot

Pl D USER PRI NICE SIZE RES STATE WAIT TI ME CPU COMVAND

8683 root 61 0 24M 25M run - 2:37 44.78%cli ps_engine
18863 mysql 2 4 398M 12Msleep poll 89:43 19.68% nysqld

21574 root 2 0 84K 716K sleep netio 0:13 11.47%clips_out put
28705 root 2 0 3136K 4316K sleep netio 0:06 5.91%get _snort_al er
31876 root 2 0 4084K 4104K sl eep netio 0:01 0. 98% mace_server
11279 root 2 0 772K 1528K sleep netio 0:01 0.83%cl i ps_server
21191 root 2 0 3596K 4472K sleep netio 0:01 0.10% cl i ps_parse

Aswe can see, MACE isusing half of the total CPU power of thismachine. The CLIPS
Engine uses a bit less than 50% of that CPU power, and the MySQL daemon another
20%. The other 30% is used by the other 5 components of MACE. The size of the
CLIPS Engine and MySQL daemon values are actually quite variable, depending on how
much data is being queried from the database, and on how the correlation itself is being
carried out.

There are some rules of thumb that the MACE user can use to keep CPU usage low:

1 Donot leave excessfactsin the expert system.
Nothing will bring the system to a grinding halt as fast as using expert system
rules that are sloppily written, and that leave all kinds of data in CLIPS after
it's no longer needed. (The more matches that the inference engine makes,
the more CPU power is necessary.)

2 Donot useagraphical MetaAlert viewer if the databaseistoo full.
For a smaller amount of aerts (afew hundred thousand), the graphical viewer
gives an excellent response time. However for larger amounts of aerts
(millions), the graphical user interface executes some extremely long queries,
that eat up lots of CPU power. If the Meta-Alert database ever becomes
problematically too large, this can be mitigated by splitting up the database
into multiple smaller databases.

Melanie Rose Rieback (1113410) Page 78 of 117

TheMeta-Alert Correlation Engine (MACE)

3. Filter out alertswith the Preprocessing Module if possible.
Both the Preprocessing Module and the CL1PS Engine are capable of filtering

out primary alerts. However, using the Preprocessing Module saves a lot of
processing power. First, it gets the aert “out of the system” at an earlier
stage, eliminating the need for processing in the other MACE components.

Secondly, the preprocessor uses procedural methods to perform the filtering
checks. This is generaly more streamlined than performing the same checks
within the context of the expert system.

29. A Closer Look at the Datasets

29. 1 Fox-IT Snort-Hal Dataset

As mentioned in Section 10.2, Fox-IT (Forensic IT Experts) has granted me use of their
client intrusion detection databases for testing and correlation purposes. The following
sections describe the composition of this data, and the techniques that | used to filter
through and correlate this data.

29.1.1 IDS Setup

The input data from the Fox-IT Ha machine consists of Snort NIDS aerts, taken from
multiple sensors. The aerts are generated with the following Snort rulesets:

bad-traffic, exploit, scan, finger, ftp, telnet, rpc, rservices, dos,
ddos, dns, tftp, web-cgi, web-col dfusion, web-iis, web-frontpage, web-
m sc, web-client, web-php, sql, x11, netbios, msc, attack-responses,
oracle, mysql, snnp, sntp, imp, pop3, nntp, other-ids, web-attacks,
backdoor, shellcode, policy, info, virus, chat, multinmedia, p2p
experinmental, |ocal

Additionally, the following preprocessors are used to generate extra information:

frag2, streamd: detect_scans, disable_evasion_alerts,
streami_reassenbl e, http_decode: 80 unicode iis_alt_unicode

doubl e_encode iis_flip_slash full_whitespace, bo: -nobrute

tel net _decode, portscan: $HOVE _NET 4 3 portscan.log, portscan-

i gnorehosts: $PORTSCAN, conversation: allowed_ip_protocols all, timeout
60, nmax_conversati ons 32000

29.1.2 Data Composition

The Snort-Hal database consists of 188344 total Snort + preprocessor alerts, collected
within the span of approximately a month.

188204 of the alerts are generated straight from the Snort rulesets, without the aid of a
preprocessor. Figure 28 shows the top 20 most-frequently-occurring Snort signatures,
along with their frequency within the SnortHal database.

Melanie Rose Rieback (1113410) Page 79 of 117

TheMeta-Alert Correlation Engine (MACE)

Signature Name Frequency
WEB-MISC net attempt 49786
MISC Tiny Fragments 13368
WEB-IIS cmd.exe access 13077
WEB-MISC robots.txt access 10626
SCAN SOCKS Proxy attempt 9050
ICMP PING NMAP 8363
WEB-MISC http directory traversal 7682
SCAN Proxy (8080) attempt 7365
WEB-IIS multiple decode attempt 6764
P2P GNUTella GET 6724
SCAN Squid Proxy attempt 5159
ICMP Destination Unreachable (Communication Administratively Prohibited) 3763
BAD TRAFFIC tcp port O traffic 3369
ICMP superscan echo 3243
WEB-IS scripts access 2760
ICMP PING CyberKit 2.2 Windows 2309
POLICY FTP anonymous login attempt 2167
EXPERIMENTAL WEB-CLIENT javascript URL host spoofing attempt 1801
WEB-MISC ?open access 1795
WEB-IIS ISAPI .ida access 1670

Figure 28— Top 20 Non-Portscan Fox-IT Alert Signatures

The last 140 Snort alerts are generated by preprocessors, mostly indicating the presence
of portscans. Portscan preprocessors (sich as spp_portscan?) generate alerts that contain
information in approximately the following format:

Portscan detected from 65.37.167.226: 21 targets 21 ports in 3 seconds
0 NULL 1 1

29. 2 DUNET-Database Dataset

29.2.1 IDS Setup

The input data from the DUNET-database machine consists of Snort NIDS alerts, taken
from a single sensor on the DUNET spanport. Alerts are generated using with the
following Snort rulesets:

bad-traffic, exploit, scan, finger, ftp, telnet, rpc, rservices, dos,
ddos, dns, tftp, web-cgi, web-col dfusion, web-iis, web-frontpage, web-
m sc, web-client, web-php, sqgl, x11, netbios, msc, attack-responses,
oracle, nysql, snnp, sntp, imp, pop3, nntp, other-ids, web-attacks,
backdoor, shellcode, ©policy, info, virus, <chat, nultinmedia, p2p,
experinmental, |ocal

No preprocessors are used on the DUNET sensor.

Melanie Rose Rieback (1113410) Page 80 of 117

TheMeta-Alert Correlation Engine (MACE)

29.2.2 Data Composition

The DUNET database consists of 4005587 total Snort aerts, collected within the span of
about 3-4 months.

Figure 29 shows the top 20 most-frequently-occurring Snort signatures, along with their
frequency within the DUNET-database.

Signature Name Frequency
SNMP trap udp 626498
ICMP Large ICMP Packet 536033
WEB-IIS scripts access 490063
NETBIOS NT NULL session 390689
SNMP AgentX/tcp request 294589
SHELLCODE x86 NOOP 270347
ICMP PING speedera 248427
ORACLE select union attempt 223967
ICMP Destination Unreachable (Communication Administratively Prohibited) 176123
WEB-IIS cmd.exe access 127335
ICMP L3retriever Ping 65521
SHELLCODE x86 unicode NOOP 55137
ORACLE all_constraints access 53057
SHELLCODE x86 inc ebx NOOP 49992
WEB-ATTACKS /bin/ps command attempt 37363
ATTACK RESPONSES 403 Forbidden 35431
ICMP Source Quench 34942
WEB-CGI archie access 32770
ICMP PING WhatsupGold Windows 23563
SNMP public access udp 23095

Figure29— Top 20 DUNET Alert Signatures
Since the preprocessors were turned off, there are no portscan aerts.

30. Filtering and Correlation Testing

The upcoming chapter describes the process that was used to filter and correlate the data
from each of the datasets, starting with the Fox-IT Snort Hal dataset.

30.1 Simple NIDS Signature Filtering

After my first discussion with Erwin Fok, the Fox-1T SOC Operator, he told me that there
are a number of IDS derts that Snort generates to the database, for the sake of
documentation and completeness, but that he never looks at because they generate large

amounts of false alarms and do not pose areal potential threat to the systems that Fox-1T
iS monitoring.

The Snort rules that are always ignored are the following:

Melanie Rose Rieback (1113410) Page81 of 117

TheMeta-Alert Correlation Engine (MACE)

Snort ID Snort Signature Description
469 ICMP PING NMAP
474 ICMP superscan echo
478 ICMP Broadscan Smurf Scanner
485 ICMP Destination Unreachable (Communication Administratively Prohibited)
524 BAD-TRAFFIC tcp port O traffic
553 POLICY FTP anonymous login attempt
615 SCAN SOCKS Proxy attempt
618 SCAN Squid Proxy attempt
620 SCAN Proxy \(8080\) attempt
648 SHELLCODE x86 NOOP
881 WEB-CGI archie access
882 WEB-CGI calendar access
895 WEB-CGI redirect access
971 WEB-IIS ISAPI .printer access
1002 WEB-IIS cmd.exe access
1057 WEB-MISC ftp attempt
1062 WEB-MISC nc.exe attempt
1201 ATTACK-RESPONSES 403 Forbidden
1213 WEB-MISC backup access
1214 WEB-MISC intranet access
1242 WEB-IIS ISAPI .ida access
1243 WEB-IIS ISAPI .ida attempt
1256 WEB-IIS CodeRed v2 root.exe access
1287 WEB-IIS scripts access
1288 WEB-FRONTPAGE /_vti_bhin/ access
1322 BAD-TRAFFIC bad frag bits
1390 SHELLCODE x86 inc ebx NOOP
1394 SHELLCODE x86 NOOP
1425 WEB-PHP content-disposition
1432 P2P GNUTella GET
1560 WEB-MISC /doc/ access
1841 WEB-CLIENT Javascript URL host spoofing attempt
1881 WEB-MISC bad HTTP/1.1 request, Potentially worm attack

Plugins were created to automatically filter out each of these Snort derts. After running
the aerts from the Snort Hal database through MACE, with these plugins activated, only

Figure 30— Snort Rulesfiltered out by the First Sweep

108649 of the original 188344 alerts were remaining. (42% reduction)

30.2 NIDS Host/Vulnerability Correlation

Some aderts with specific signatures cannot be automatically filtered out, just because
If an aert with a particular signature poses a
potential threat to the computer(s) that it is targeting, it doesn’t matter how many false

they generate a large amount of data

positives may occur.. a more careful look is warranted!

Melanie Rose Rieback (1113410)

Page 82 of 117

TheMeta-Alert Correlation Engine (MACE)

This is where the signature vs. vulnerability matching (described in Chapter 24) can be
useful, creating meta-alerts to bring special attention to aerts with a higher probability of
indicating an actual break-in.

30.2.1 Collecting Vulnerability Information

There are several manners of collecting vulnerability information. One specific method
is to use a vulnerability scanner. These ‘scanners can run through a sequence of IP
addresses, checking each computer for open ports and services. Some popular
vulnerability scanners include Nmap and Nessus.

Fox-1T runs periodic vulnerability scans on their client machines. Figure 31 shows the
results of a periodic Nessus scan on the FoxIT demilitarized zone network segment
(dmz).

Sensor Hostname IP Address Protocol Port Service
nessus-dmz 195.64.85.113 udp 123 ntp
nessus-dmz 195.64.85.113 tcp 22 ssh
nessus-dmz 195.64.85.116 tcp 113 auth
nessus-dmz 195.64.85.116 tcp 22 ssh
nessus-dmz 195.64.85.122 tcp 21 ftp
nessus-dmz 195.64.85.122 tcp 25 smtp
nessus-dmz 195.64.85.122 tcp 22 ssh
nessus-dmz 195.64.85.68 tcp 22 ssh
nessus-dmz DUNET-database 195.64.85.69 tcp 22 ssh
nessus-dmz 195.64.85.70 tcp 1723 pptp
nessus-dmz 195.64.85.71 tcp 22 ssh
nessus-dmz 195.64.85.74 tcp 443 https
nessus-dmz 195.64.85.74 tcp 22 ssh
nessus-dmz 195.64.85.74 tcp 80 WWW
nessus-dmz 195.64.85.75 tcp 22 ssh
nessus-dmz mail2.fox-it.com 195.64.85.66 tcp 53 domain
nessus-dmz mail2.fox-it.com 195.64.85.66 tcp 53 domain
nessus-dmz mail2.fox-it.com 195.64.85.66 udp 53 domain
nessus-dmz mail2.fox-it.com 195.64.85.66 tcp 25 smtp
nessus-dmz mail2.fox-it.com 195.64.85.66 tcp 25 smtp
nessus-dmz mail2.fox-it.com 195.64.85.66 tcp 22 ssh
nessus-dmz mail2.fox-it.com 195.64.85.66 tcp 22 ssh

Figure 31 — Nessus Vulnerability Scan Results on Fox-IT DMZ

We see that this Nessus scan reveal s information about the DMZ machines (hostname/ip
address) and it provides alist of their open (or obvioudly filtered) TCP/UDP ports.

| have extensive information about the machines on the 130.161.180. and 130.161.181.
subnets of the DUNET network, via an nmap scan performed by Lolke Boonstra. | will

Melanie Rose Rieback (1113410) Page 83 of 117

TheMeta-Alert Correlation Engine (MACE)

use the DUNET -database data in the upcoming examples to demonstrate how to perform
vulnerability / attack correlation.

30.2.2 Creating Vulnerability Facts

The nmap scans from the DUNET-database contain entries that look like something like
the following example:

Interesting ports on nsl.tudelft.nl (130.161.180.1):

(The 6 ports scanned but not shown below are in state: closed)
Por t State Service

21/ tcp open ftp
22/ tcp open ssh
23/ tcp open tel net
25/tcp open sntp

Renpt e operating system guess: Sun Solaris 8 early acces beta through
actual rel ease
Uptinme 126.318 days (since Fri Oct 18 08:27:17 2002)

While the information from the nmap scan may not be 100% accurate, this gives us
enough information to perform correlation between attacks and their target computers.
(Thisis also approximately the same information that a hacker has at his’/her disposal, so
even if some of the information here is false, we can till get an insight about how
serioudly a hacker is attempting to break in.)

The results of the Nmap scan can be used to automatically create expert system facts.
The above shown nmap example can be represented by the following expert system fact:

(deffacts define-dunet-network-info-subnet-180-exanple
(systeminfo
(ny-i p-address "130.161.180.1")
(ny- oper ati ng- system
"Sun Solaris 8" "Solaris 8" "Solaris Any version"

)
(my-services "ftp" "ssh" "telnet" "sntp" "http")))

In order to perform the aert correlation in the upcoming section, | created one expert-
system fact per Nmap entry for each of the DUNET machines.

30.2.3 Results of Vulnerability Correlation

After entering the platform / service expert system factsinto CLIPS, | processed a portion
of the DUNET -database alerts with MACE, using the vulnerability / attack correlation
scheme described in Chapter 24.

In the following section, | have run portions of the DUNET -database aerts through
MACE. | have not used the entire collection of DUNET alerts for the following reason:
it would take an entire workweek to run all of the ~4 million DUNET-database alerts
through the MACE system. | will do this a a later point in time, when a more stable

Melanie Rose Rieback (1113410) Page 84 of 117

TheMeta-Alert Correlation Engine (MACE)

user interface is created (ACID, which | have temporarily borrowed as a GUI, leaves
database connections open, resulting in infrequent but spontaneous MySQL aborts). In

the meanwhile, | have performed the correlation and testing and smaller subsets of the
total DUNET-database dataset.

These are the results of one example MACE run: When running the DUNET-database
alerts through the system over the time-span of 6 hours and 50 minutes, the system

processed 222469 alerts, and generated 493 meta-alerts. (The system processed about 9
raw IDS aerts per second). Thisisa99.78% reduction in aert data.

Some of the “platform-matching” meta-alerts that were created are:

NetBIOSNT NULL session - (Matched when targeting Windows NT machines)
SNMP AgentX/tcp request — (Matched when targeting Solaris 8 machines)
WEB-FRONTPAGE _vti_rpc access — (Matched when targeting Windows NT

machines)

WEB-IIS File permission canonicalization — (Matched when targeting Windows
NT machines)

WEB-IIS view source via trandate header — (Matched when targeting Windows
NT machines)

The following “service matching” meta-alerts were created:

SNMP public access udp — (Matched when targeting snmp)

WEB-COLDFUSION administrator access - (Asatest, | added “Coldfusion” to
some of the DUNET computer service profiles. These were indeed picked out
and correlated into meta-alerts by MACE.)

Figure 32 shows a screenshot of ACID, displaying the MACE-generated metaa erts:

Melanie Rose Rieback (1113410) Page 85 of 117

TheMeta-Alert Correlation Engine (MACE)

g ACID: Alest Liciing - Micsocol Inimima | Ezplomn previded by FoxdT Fomencic IT Ezpesta b,

Fia Edd Yen Faemide: Toos Hdp

= B - e i e e e)

Aekiens |ig] b= 156 BA 95 60 acid ncicl_ital_sbui= php =] eBa Lk ™
udied DH o © Thu June 26, 2003 0955 48 :l
\Mieta Critaris any
g e
P Criteri =
Loyar 4 Critaria LS
B agload Crite i T

Displeying dars 1-12 of 12 tocad
Signatur Classificatio Total Sensor - Sre. - Dest
Signature Classification
e # Agdr. - Addr.
i |smant] MNETEIGE WT MOLL sassion srait EHE [E] 1 f: b allle - By R IS EE P | R BTGP S (R
'l [mori] WEB-C G| redierd acress srar P14 3% 1 ke a MNEAEIS 120705 1000828 B5-1h-0R
r [siveat] ENRP AganTtop raguest siedit 6 (5% 1 2 2 FZ 8634 114528 I000-06-26 85171011
- [smen|WEB-FRONTRPAZE wi_mc arcass wrart T (1%| 1 1 2 20038635 120721 10GD6.25 162551
- [Enean] WEB-IS File periiaann Bt 48 (10%) 1 [13 O30S TR Te-06-26 S04
camanicalizalion
O [sneei] WEB-MEC adminphp acoess =t 2 0% 1 | | 2O0F0ETS 1365 NG 0625 16301
I [Foii®] SHKIP pobilic J06Es3 udp Erait 38 B 1 i p2 | JINEEE TS TS P 0625 163601
N |sneat] DDAS TFH Praba srart 1| 1 1 1 PONEDEI 102280 000625 1532204
- [enisn] NETBINS SMB IPCRacces: ernr 13 %] i 3 2 23 0I5 13:23:37 T35 2 #1084
K] |smost] WEE-COLDFUSION admintstrator Eraart 15 (%] 1 1 2 FO03 0625 18:86:3 N0006.25 145632
MCETS
‘m [Enoet] WEB-1S virw soume wa {ranskals erart 1 0% 1 1 | ANNEMEI5 15:50: 81 TR0006.25 155004
Frasider
) [t .-|'.| ODOS reatream handar b cliam st f |;|]‘75a._| 1 1 1 IR0 162058 PR E 25 160 2h

1] B o Inmra
S| | 7] @ 00 || Fissnimin P | PFebek Wl | Mid5EkES RS- P | B Thesic Aotk [800 atort 1., | ECakoibia b T am
Figure 32— Using ACID to Display Meta-Alerts

(Note: I'm only using ACID on a temporary basis to display the meta-alerts It is
obviously not designed to represent IDMEF, host-based or other tool-based alert data.
Within the upcoming months, | will design my own PHP-based user interface, that
represents things based upon the alerts IDMEF-representation in the Metaalert database.
However, my future web interface was not redizable in time for submission of this
Masters thesis report.)

30.2.4 Target Vulnerability Reports

MACE output can aso be used to generate reports specifying the platforms and services
that are targeted the most frequently. Figure 33 shows a list of the top 10 most-
frequently targeted services, as seen in a sample of the DUNET-database attacks:

Service Targeted Frequency
Php 27.5%
Microsoft 11S 5.0 15.0%
Microsoft I1S 4.0 15.0%
Common Gateway | nterface (CGI) Any verson 13.8%
Coldfusion Any version 10.0%
Formmail Any version 88%
Snmpvl Any version 25%

Melanie Rose Rieback (1113410) Page 86 of 117

TheMeta-Alert Correlation Engine (MACE)

Red Hat Powertools 7.1 25%
Oracle Enterprise Manager 25%
Hp OpenView Network Node Manager 2.5%

Figure 33— Ten Most-Frequently Vulneralde Services (DUNET-database)

Figure 34 shows an example list of the top 20 most-frequently targeted platforms, as seen
in a sample of the DUNET-database attacks:

Platform Targeted Freguency
Windows NT Any version 7.0%
Windows 2000 Any version 7.0%
Windows 98 6.3%
Windows 95 6.3%
Windows for Workgroups 3.11 5.9%
Windows Any version 5.9%
Samba Any version 5.9%
Os/2 Any version 5.9%
Linux kernel 2.0.x 5.9%
Suse Linux 4.4%
Red Hat Linux 4.4%
Mandrake Single Network Firewall 4.4%
Mandrake Linux Corporate Server 4.4%
Mandrake Linux 4.4%
Debian Linux 4.4%
Caldera OpenLinux Workstation 4.4%
Caldera OpenLinux Server 4.4%
Trustix Secure Linux 4.1%
Engarde Secure Linux 4.1%

Figure 34 — Twenty Most-Frequently VulnerablePlatforms (DUNET -database)

31. Filtering and Correlation Problems

At first appearances, the data reduction rate is fantastic (over 99%), and the generated
alerts, when traced back through the MACE logs, actually correlate to known
vulnerabilities in the monitored systems. However, thisis not al cause for celebration.
Besides the few false positives that haven’t been correlated away, there is the much larger
problem of false negatives in the metaalert data. The next few sections will explain
some of the problems that still need to be overcome in order to make Attack /
Vulnerability meta-alert correlation effective.

31.1 Insufficient Platform/Service Information

Melanie Rose Rieback (1113410) Page 87 of 117

TheMeta-Alert Correlation Engine (MACE)

In my opinion, one of the largest problems with attack / vulnerability correlation is that
we can only create meta-alerts for machines that we have information about. This point
may sound obvious, but | didn't realize how large of a problem this would be until |
looked at the Fox-IT client vulnerability-scan data.

The vast mgjority of the client machines that were “Nessus’ (vulnerability) scanned are
either behind a firewall (blocking the scans), or Fox-IT does not have permission to run
vulnerability scans on these machines. (The client is sometimes worried that the
vulnerability scan may crash or otherwise disrupt critical machines on the network.) The
only network segment that Fox-IT had adequately scanned was FoxIT's own
demilitarized zone (see Figure 29). However, due to low network traffic levels, not a
single of the Snort “attacks’ correlated with the correct platform/service. Therefore, not
asingle meta-aert was produced.

If a SOC operator is relying on MACE as his’lher primary source of information, this
presents a large problem. Additionally, this lack of information / customer cooperation is
also apparently not exclusively Fox-1T's problem. | learned from conversations with
other third-party SOC operators, that this difficulty is encountered frequently, and that
creativity and supplementary tools are required to gather this elusive information.
Additionally, this lack of platform/service context information not only hinders
automated monitoring, but it causes problems with manual correlation efforts as well.

| believe that the platform/service information can be filled in through other means, that a
client may be more agreeable to. For example, “passive’” methods can be used to
determine the host platforms and services. Since a SOC already has permission from the
client to sniff the network traffic, a program can aways be used to monitor the port
traffic and to record the service banners that get sent across the wire. A database can then
store this information, and upon request, automatically convert it into the expert system
rules.

It appears to me that some kind of “big-picture’ solution needs to be created, to collect
and store current information about managed computers and networks, as well as
collecting and managing information about Intrusion Detection Alerts themselves.
Additionally, | believe that host-based monitoring (and host-based platform/service
information collection tools), aong with other methods of intrusion detection (anomaly -
based IDS, bandwidth analysis, traffic-policy violation analysis, portscan analysis, €tc..)
can be used to help to fill in this incomplete picture.

31.2 Insufficient Signature Conversion Information

Another problem that | have encountered, that has caused the undesirable filtering-out of
crucial derts, is incomplete information with regards to crosscorrelation with
vulnerabilities and more standardized alert identifiers (ex. CVE). | have used Snort as
my primary alert source until now, and there are some serious gaps in the chain of
information conversion that is required to produce meta-al erts.

Melanie Rose Rieback (1113410) Page 88 of 117

TheMeta-Alert Correlation Engine (MACE)

For an example, we can take a look at our source for Snort alert conversion information:

the Snort webpage. Figure 35 shows a not-sc-uncommon example of Snort rule
documentation:

AR Sneet.mg - MicrexsP Inbmnet Exglone providied by Foel T Fosesae |1 Exgaikz bov

Fla Edd Weni Feoide: Took Hdp

SBd - - D | Gfesch EFwes et 3 - SE- B

kcﬂm|{| i it o p ety rid b= 1675 :] _.iE‘F.-:I Lnl;"
| XD 1675 HREEAFe CEACLE meparsed logn negponse =
FEET r Senatare [lerttop SEXTERMAL FET aoy -= $20L_SERVERS $CRACLE PORTS (meg"CRACLE
% Mews mispareed login resporss"; Bow fom_server, establiched; content"descnpbon=[T; nocass
(et the latest news ahout contenkMocanect_dataead=") nocase, conbent Maddres =Vpretac o p”, nocase,
our fvonbs pog classbype:rusprorns-logm, sid: 1675, o3
+ Darmmnent ating Sammary
Tnformanca an bowr o Tz evenk 12 penerabed whet & cedrdn i = 2oed ts o Orarle datbiee geraer that may result
setup tha pig A pedous oompromise of the data sterad on that system.
+ Dsundnads Tanpaaet
Get the g, ind 6l adding Genons. An attacker may have grned sopenseer access b2 the system.
if e MEHER e Datalbed Tl event v generabed when an attecker issues a spenal command te w Oracle databome that
i Informatien ' may resuk in a ==oous compramse of all data stored on that mestem
* Mailing fists
Dasrussote abeut nort Such conminds meay be waed to gain socess 1o a syetem wich the prrilsges of an sdministrator,
« User Groaps chelmim caba, mdd dabw, addd wmers, delebe upers, coburn sensirre formatian or gan oielgence on
Likes mincled pig Lewers the =enrer softarare for fxrther nystem compromise
et tege thar te dienag
ot Thaz comnection can sther be A laprrrabs et cofdenea o the casl af Sy @ rernede
5 Hules shellas a ronsequence of a pecreashil netw ork maploik.
2 the sformatien ghout Allartad
e yol codlld awer Wank Symrns
Soarch P | S:::_:; Sinnple Thewe are Cracle databage comamands =X
Ease al :
Eirnpl
| Autack R
Falsa Thiz event oy be generated by a dotobase adminishrabor logging in and isaung datnbase
W ated Tl it s Fogiives commands from a locatem cukade te protecied s
| Ty Hane K powni
MNegatvis
[Dona o I

ESa]| | 2] @ oo || Fresnimay | B pedn . | S issedemian | E7ATE Mek i | F| Docmnrd |] Thasi Ao [smortons - [iics- EENED 1243
Figure 35— Snort.org— Oracle Misparsed Login Response Rule Documentation

This figure shows the documentation for the “ORACLE misparsed login response’ rule.

It is pretty clear upon first inspection by a security analyst what the vulnerable service
here is (Oracle). However, it is much more difficult for an automated system to extract
this same information.

Here are the only references to that could lead us to Oracle in this rule description:

Summary / Detailed Information - This event is generated when a command is

issued to an Oracle database server that may result in a serious compromise of the
data stored on that system.

Affected Systems— (l€eft blank)

Attack Scenarios- Simple. These are Oracle database commands.
Corrective Action - Use afirewall to disallow direct access to the Oracle
database from sources external to the protected network.

References — (left blank)

Melanie Rose Rieback (1113410) Page 89 of 117

TheMeta-Alert Correlation Engine (MACE)

Unless we write a system that can extract the names of platforms/services from prose
descriptions, we will not be able to use this Snort alert to produce a metaalert. Or, if
someone (several people) make a very directed effort towards adding more Reference
information to the rule descriptions in the Snort.org rule base, that might also improve the
situation. This kind of coordinated effort is arguably simpler than writing a program that
can parse prose descriptions, but it is still a considerable amount of work. This would
also need to happen for any other signature-based Primary Alert sources (Dragon, ISS,
Cisco, etc..) that are used as input to MACE. Naturally the proprietary signature based
IDS systems will correlate more cleanly using their avn products (ex. 1SS Real Secure
IDS/ ISS Internet Scanner). However, we can redly only use various commercial
primary aerts together in a meaningful way if we can somehow correlate back to Open
Standard ID’s like those from CVE or Bugtrag. I'm hoping that this situation will
improve in the upcoming years as attack / vulnerability correlation becomes a more
established technique in the Intrusion Detection arena.

32. Future Research Directions

| believe that progress can be made in Intrusion Detection by advancing research and
technologies in the following areas:

Integration of existing IDS technologies. Many of the purely “academic” IDS
methodologies (state transition models, neura networks, dstatistica anaysis,
genetic algorithms) have not yet been used in conjunction with the more widely
accepted 1DS methodol ogies (signature-based, host-based).

Continued research in how Expert Systems can be used to smulate human
reasoning in the correlation of IDS aerts. (MACE provides a ready-made vehicle
for this))

Improved collection and usage of “contextual” information, describing the

monitored networks and computers. (Ex. platform/services, machine purpose,
owner, importance).

Enable existing (and future) IDS technologies to work with Open Standards, like
the Intrusion Detection Message Exchange Format (IDMEF).

Development of more intuitive data presentation tools that use correlated and
integrated data to present a more holistic view of the entire situation.

Melanie Rose Rieback (1113410) Page 90 of 117

TheMeta-Alert Correlation Engine (MACE)

Part I X — Conclusion

Intrusion Detection has come a long way in the last decade, but it still has much further to
go in the next. We have a wide array of Intrusion Detection tools at our disposal, that
excel at their own specific tasks: finding signatures in traffic; highlighting anomalous
traffic activity, unconventional protocol usage, changes in system logs, etc.. However,
most of these tools are written to be solutions in and of themselves. The current host of
existing IDS tools were created by people spanning the globe, who may hawe never had
the intention of alowing their tools to work in conjunction with others as part of a larger
solution. Interoperability is the next big step, and | believe that a sort of “holistic”
analysis, with a greater inclusion of stuational and socia context, is required for a
computer to make sense of the barrage of small technical details.

| believe that the MetaAlert Correlation Engine has succeeded in providing a solid
groundwork for continuing work in this area. While an enormous amount of wor k
remains to be done, | think that MACE's use of the Intruson Detection Message
Exchange Format and its reasoning facility (CLIPS) will provide a useful tool for both
the integration of separate IDS techniques, as well as for the analysis of how well these
techniques can actually work together.

Construction of a “larger-picture” is utterly necessary. After all, for most people, this all
reduces down to a simple question anyways.

Were we hacked or not?

Melanie Rose Rieback (1113410) Page 91 of 117

TheMeta-Alert Correlation Engine (MACE)

Part X - References

1. Sandeep Kumar, Ph.D. Thesis, Purdue University, August 1995. Classification and
Detection of Computer Intrusions

2. Terry D. Escamilla, Intrusion Detection, Network Security Beyond the Firewall, John
Wiley & Sons, 1998.

3. Aurobindo Sundaram, “An Introduction to Intrusion Detection”,
http://www.acm.org/crossroads/xrds2-4/intrus.html

4. Dorothy Denning, “An Intrusion Detection Model”, IEEE Transactions on Software
Engineering, Vol. SE-13, No. 2, February 1987, 222-232.

5. Ledlie Smith, “An Introduction to Neural Networks’, University of Sterling,
http://www.cs.stir.ac.uk/~Iss'NNIntro/InvSlides.html

6. “Network- vs. Host-based Intrusion Detection”, Internet Security Systems,
http://documents.iss.net/whitepapers/nvh_ids.pdf

7. “Intrusion Detection Exchange Format (idwg) Charter”,
http://www.ietf.org/html.charters/idwg-charter.html

8. M. Wood, Internet Security Systems, and M. Erlinger, Harvey Mudd College.
“Intrusion Detection Message Exchange Requirements’ (Internet Draft). October 22,
2002. http://www.ietf.org/internet - drafts/draft-ietf-idwg-requirements- 10.txt

9. Gary Riley, “What is CLIPS?’, http://www.ghg.net/clips/WhatlsCL | PS.html

10. Chris Green, “Snort Users Manual”, http://www.snort.org/docs/writing_rules
11. Roman Danyliw, “SnortDB Database Schema’,
http://www.snort.org/docs/snortdb.png

12. John Bull, “Snort’s Place on Windows 2000”, http://www.snort.org/docs/snort-
winzk.htm

13. David Axmark and Michagl Widenius, MySQL AB, “MySQL Manual: Genera
Information”,

http://www.mysgl.com/documentati on/mysql/bychapter/manual _I ntroduction.html
14. Stunnel Homepage”, http://www.stunnel.org/

15. Roman Danyliw, “Analysis Console for Intrusion Databases (ACID)”,
http://www.andrew.cmu.edu/~rdanyliw/snort/snortacid.html

16. “OpenBSD FAQ: Introduction to OpenBSD”, http://www.openbsd.org/fag/fagl.html
17. “The Standard Template Library: Introduction”,

http://www.sgi.com/tech/stl/stl introduction.html

18. Coronado Enterprises, “C++ Tutorial: Introduction”,
http://www.coronadoenterprises.com/tutorial /'cpp/cpp_intro.html

19. Stig Segher Bakken, Alexander Aulbach, et. a., “PHP Manual“,
http://www.php.net/manual/en/

20. W3C, “HTML 4.0 Specification”, http://www.w3.org/TR/1998/REC-html40-
19980424/

21. Gary V Vaughan, Ben Elliston, Tom Tromey and lan Lance Taylor, “ Autoconf,
Automake, and Libtool”,
http://sources.redhat.com/autobook/autobook/autobook_toc.html

22. Ronad Prins and Rens de Wolf, Fox-IT, “Interviewverslag DUNET Topologie”

Melanie Rose Rieback (1113410) Page 92 of 117

TheMeta-Alert Correlation Engine (MACE)

23. Children’s Mercy Hospitals and Clinics, “Stats: Query, Confidence Interval”,
http://www.cmh.edu/stats/size/confid.asp

24. Dr. Steve Blythe, Statistics and Modeling Science, University of Strathclyde,
“Interval Estimates. Confidence Interva”,
http://www.stams.strath.ac.uk/~steve/53202/confint1.pdf

25. “Overview of the IETF’, http://www.ietf.org/overview.html

26. Silicon Defense, “libidmef”,
http://www.silicondefense.com/idwg/libidmef/index.htm

27. “LBNL’s Network Research Group”, http://www-nrg.ee.|lbl.gov/

28. Joseph Giarratano, Ph.D., “CLIPS User Guide”,
http://www.ghg.net/clips/downl oad/documentati on/usrguide. pdf

29. Hans Boehm and Alan J. Demers, “A garbage collector for C and C++”,
http://www.hpl.hp.com/personal/Hans Boehm/gc/leak.html

Melanie Rose Rieback (1113410) Page 93 of 117

TheMeta-Alert Correlation Engine (MACE)

Part Xl - Appendix (Source Code)

Class Definitions

Arpmonitor

arp_stats

00068 class arp stats {
00069 string i p_address_src;

00070 string i p_address_dest;
00071 string mac_address_src
00072 string tinmestanp;

00087 };

IDMEF++

idmef_action

00511 class idnef_action {
00513 string category;
00514 string data;

00526 };

idmef_additionaldata

00586 class idnef_additional data {
00588 string type;

00589 string neaning;

00590 string dat a;

00604 };

idmef_address

00017 class idnef address {
00019 string ident;

00020 string category;
00021 string vlan_nane;
00022 string vl an_num
00023 string address;
00024 string netmask;
00045 };

idmef_alert
00705 class idnmef _alert {
00707 string ident;

00708 list <idnmef_analyzer *> Anal yzer

00709 list <idmef _tinme *> Createtine;

00710 list <idmef_tine *> Detecttine;

00711 list <idmef_time *> Anal yzerti ne;

00712 list <idnmef_source *> Sources;

00713 list <idmef_target *> Targets;

00714 list <idnmef_classification *> Classifications;
00715 list <idnef_assessnment *> Assessnent;

Melanie Rose Rieback (1113410) Page 94 of 117

TheMeta-Alert Correlation Engine (MACE)

00716 list <idnmef_correlationalert *> Correlationalert;
00717 list <idnef_toolalert *> Toolalert;

00718 list <idmef_overflowal ert *> Overfl owal ert;

00719 list <idnmef_additional data *> Additi onal dat a;
00765 };

idmef _alertident
00568 class idnef_alertident {

00570 string dat a;
00571 string anal yzerid;
00583 };

idmef_analyzer

00606 cl ass idnef_anal yzer {
00608 string anal yzerid;
00609 string manufacturer
00610 string nodel;

00611 string version;

00612 string anal yzer _cl ass;
00613 string ostype;

00614 string osversion;

00615 list <idnmef_node *> Node;
00616 list <idnef_process *> Process;
00644 };

idmef_assessment
00545 cl ass idnef assessnent {

00547 list <idmef_inmpact *> | npact;

00548 list <idmef_action *> Actions;

00549 i st <idnmef_confidence *> Confi dence;
00566 };

idmef_classification

00067 class idnef_classification {
00068 string origin;

00069 string nane;

00070 string url

00085 };

idmef_confidence

00528 class idnef confidence {
00530 string rating

00531 string dat a;

00543 };

idmef_correlationalert

00687 class idnef correlationalert {

00689 string nanme;

00690 list <idnmef_alertident *> Alertidents;
00703 };

idmef_file
00343 class idnmef file {
00345 string ident;

Melanie Rose Rieback (1113410) Page 95 of 117

TheMeta-Alert Correlation Engine (MACE)

00346 string category;
00347 string fstype
00348 string nane;

00349 string path,;

00350 string create_tine;
00351 string nodify_time;
00352 string access_ti ne;
00353 string data_si ze;
00354 string disk_size;

00355 list <idmef fileaccess *> Fil eaccesses;
00356 list <idnmef_linkage *> Linkages;

00357 list <idmef_inode *> | node;

00394 };

idmef fileaccess
00268 class idnef fileaccess {

00270 list <string> Pernissions;
00271 list <idnmef _userid *> Useri d;
00285 };

idmef_filelist

00397 class idnmef filelist {

00399 list <idnmef file *> Files;
00410 };

idmef_heartbeat
00768 class i dnef heartbeat {
00770 string ident;

00771 list <idnef_analyzer *> Anal yzer

00772 list <idmef _tinme *> Createtine;

00773 list <idnmef_tinme *> Anal yzertine;

00774 list <idnmef_additional data *> Additional dat a;
00796 };

idmef_impact

00488 cl ass idnef _inpact {
00490 string severity;
00491 string conpl etion;
00492 string type

00493 string data;

00509 };

idmef_inode

00314 cl ass idnmef i node {
00316 string change_ti ne;
00317 string nunber;

00318 string maj or_devi ce;
00319 string mnor_device;
00320 string c_major_device;
00321 string c_m nor_device
00341 };

idmef_linkage
00289 class idnef |inkage {

Melanie Rose Rieback (1113410) Page 96 of 117

TheMeta-Alert Correlation Engine (MACE)

00291 string category;

00292 string nane;

00293 string path;

00294 list <idmef _file *> File;
00311 };

idmef _message
00799 cl ass i dnef nessage {
00801 string version;

00802 list <idnmef_alert *> Alerts;

00803 list <idnef_heartbeat *> Heartbeats;
00819 };

idmef_node

00241 cl ass idnef node {
00243 string ident;
00244 string category;
00245 string location
00246 string nane;

00247 list <idnmef_address *> Addresses;
00266 };
idmef_object

00014 cl ass i dnmef_obj ect {
00015 list <idmef_nessage *> Messages;
00091 };

idmef_overflowalert

00667 class idnef overflowalert {
00669 string program

00670 stri ng si ze;

00671 string buffer;

00685 };

idmef_process

00210 class i dnef process {
00212 string ident;

00213 string nane;

00214 string pid;

00215 string path;

00216 list <string> Arg;
00217 list <string> Env;
00239 };

idmef service

00176 class idmef service {
00178 string ident;

00179 string nane;

00180 string port;

00181 string portlist;
00182 string protocol

00183 list <idnmef_webservice *> Webservi ce;
00184 list <idnmef_snnp_service *> Snnpservice
00208 };

Melanie Rose Rieback (1113410) Page 97 of 117

TheMeta-Alert Correlation Engine (MACE)

idmef_snmp_service

00132 class idnef snnp_service {
00134 string oid;

00135 string community;

00136 string commuand;

00150 };

idmef_source

00412 cl ass idnef _source {
00414 string ident;
00415 string spoofed
00416 string interface;

00417 i st <idmef_node *> Node

00418 list <idnef_user *> User;

00419 list <idnmef_process *> Process;
00420 list <idnmef_service *> Service
00446 };

idmef_target

00448 class idnef target {
00450 string ident;

00451 string decoy;
00452 string interface;

00453 list <idnmef_node *> Node;

00454 list <idmef_user *> User;

00455 list <idnmef_process *> Process;
00456 list <idnmef_service *> Service
00457 list <idmef filelist *> Filelist;
00486 };

idmef_time

00048 class idnmef tinme {
00050 string unix_timestanp;
00064 };

idmef_toolalert

00646 class idnmef _toolalert {

00648 string nane;

00649 string command;

00650 list <idnef_alertident *> Alertidents;
00665 };

idmef _user

00111 class idnmef user {
00113 string ident;
00114 string category;

00115 list <idmef _userid *> Userids;
00130 };
idmef_userid

00088 class idmef userid {

00090 string ident;
00091 string type

Melanie Rose Rieback (1113410)

Page 98 of 117

TheMeta-Alert Correlation Engine (MACE)

00092 string nane;
00093 string nunber;
00109 };

idmef webservice

00152 cl ass i dnef webservice {
00154 string url

00155 string cgi

00156 string http_method;

00157 list <string> Arg;
00174 };

Libmace

database query

00022 cl ass dat abase_query {

00024 string host naneg;

00025 string db_nane;

00026 string user_id;

00027 string password;

00028 string query_string;

00029 vector <string> query_results;
00044 };

protocol

00012 cl ass protocol {

00013 i st<string> protocol nane;
00014 list<int> protocol _num
00026 };

tcp_socket

00028 class tcp _socket {

00029 i nt sockfd;

00030 int listenfd;

00031 int connfd

00032 pid_t childpid;

00033 struct sockaddr _in servaddr;
00034 struct sockaddr _in cliaddr;
00035 string sendline;

00036 int serv_port;

00037 string serv_ip_address;
00038 void sig chld(int);

00066 };

MACE Preprocessing

plugin_loader

00031 cl ass plugin_| oader {
00032 It _dl handl e handl €;
00033 char *fil enane;

00034 char *nodul e_pat h;
00036 list<string> plugin_SID;
00046 };

Melanie Rose Rieback (1113410)

Page 99 of 117

TheMeta-Alert Correlation Engine (MACE)

PAM Snort

sensor_list

00025 cl ass sensor _|ist {

00026 list <string> sensor _id;

00027 list <string> sensor_|ast_cid;
00028 list <string> sensor_nax_cid;
00045 };

Melanie Rose Rieback (1113410) Page100 of 117

TheMeta-Alert Correlation Engine (MACE)

Non-Member Function Descriptions

Arpmonitor

arpmonitor.h

00091 int main (int, char **);
Main function.

00092 void initiate_tinmed_sniff(char*, const char*, int, int);
Initiate network sniffing for a specified time interval.

00093 pcap_t* open_pcap_socket (char* device, const char* bpfstr);

Open the libpcap socket.

00094 void capture | oop(pcap_t* pd, int packets, pcap_handler func);
Start the packet capture loop.

00095 voi d parse packet(u_char *user, struct pcap_pkthdr *packethdr
00096 u_char *packetptr);

Parse the captured packet.

00097 int extract arp info(struct pcap_pkthdr *packethdr, u_char
*packetptr, arp stats *Arp_Stats);

Extract the ARP information from the packet.

00098 void send arp packet to db(arp stats *Arp_Stats);
Send the arp information to the database.

00099 void rempve _arp info from db(arp stats *Arp_Stats);
Remove the old arp information from the database.

00100 int query matching arp_information(arp_stats *Arp_Stats,

arp stats *Arp_Stats2)
Query matching arp entries from the database.

00101 int conpare_two_arp_entries(arp_stats *Arp_Stats, arp_stats
*Arp_Stats2);
Compare two ARP entries in the database.

00102 void generate new station alert(arp stats *Arp_Stats);
Generate an Arpmonitor “new station” IDMEF alert.

00103 voi d generate_changed_nac_address_al ert (arp_stats *Arp_Stats,

arp stats *Arp_Stats2)
Generate an Arpmonitor “changed MAC address’ IDMEF alert.

Melanie Rose Rieback (1113410) Pagel01of 117

TheMeta-Alert Correlation Engine (MACE)

00104 void bail out (int signo);
Stop the network sniffing, since a signal was caught.

00105 unsigned i nt alarm (unsigned i nt seconds);
Generate a SIGALM after the specified number of seconds.

IDMEF++

idmef_xml.h

00029 void set _my xml gl obal s();
Set globa variables that libidmef requires.

00038 void generate my xml classification(idmef classification
*| dmef _Cl assi fication);

Generate the IDMEF classification XML tag.

00047 voi d generate_ny_xm _address(i dnmef_address *I|dnmef _Address);
Generate the IDMEF address XML tag.

00056 voi d generate my xm node(idnef node *Idmef_Node);
Generate the IDMEF node XML tag.

00065 voi d generate ny xml additional data(i dnef additi onal dat a
*| dmef _Addi ti onal dat a) ;
Generate the IDMEF additionaldata XML tag.

00074 voi d generate nmy xm process(idmef process *Idnmef _Process);
Generate the IDMEF process XML tag.

00083 void generate nmy xml anal yzer (idnmef anal yzer *Idnef_Anal yzer);
Generate the IDMEF analyzer XML tag.

00092 void generate ny xml target(idmef target *Idnmef_Target);
Generate the IDMEF target XML tag.

00101 voi d generate _nmy xml source(idnmef _source *I|dnmef_Source);
Generate the IDMEF source XML tag.

00110 void generate nmy xm createtinme(idnmef tine *Idmef_Createtine);
Generate the IDMEF createtime XML tag.

00119 voi d generate_mnmy_xm _anal yzerti me(idnmef_tine
*| dmef _Anal yzertinme);
Generate the IDMEF analyzertime XML tag.

00128 void generate ny xml detecttinme(idmef tinme *Idmef_Detecttinme);
Generate the IDMEF detecttime XML tag.

00137 voi d generate ny xml i npact(idmef _inpact *Idnmef_I npact);

Melanie Rose Rieback (1113410) Page102of 117

TheMeta-Alert Correlation Engine (MACE)

Generate the IDMEF impact XML tag.

00146 voi d generate ny xml assessnent (i dnef assessnent
*| dmef _Assessnent) ;

Generate the IDMEF assessment XML tag.

00155 voi d generate ny xml action(idnmef action *Idnmef_Action);
Generate the IDMEF action XML tag.

00164 voi d generate nmy xml confidence(i dnef confi dence
*| dmef _Confi dence) ;

Generate the IDMEF confidence XML tag.

00174 voi d generate nmy xm correlationalert(idnmef correlationalert
*| dmef _Correl ationalert);

Generate the IDMEF correlationalert XML tag.

00183 voi d generate nmy xml toolalert(idmef toolalert
*| dmef _Tool al ert);

Generate the IDMEF toolaert XML tag.

00192 voi d generate nmy xml overflowal ert (i dnmef _overfl owal ert
*| dmef _Overflowal ert);

Generate the IDMEF overflowalert XML tag.

00201 voi d generate my xml alertident(idnef al ertident
*| dmef _Al ertident);

Generate the IDMEF alertident XML tag.

00210 void generate_nmy xml _alert(idnef_alert *Idnmef_Alert);
Generate the IDMEF alert XML tag.

00219 voi d generate nmy xml heartbeat (i dmef heart beat
*| dmef _Heart beat) ;

Generate the IDMEF heartbeat XML tag.

00228 voi d generate ny xm service(idnmef service *Idmef _Servi ce);
Generate the IDMEF service XML tag.

00237 void generate_nmy xm webservi ce(i dmef webservice
*| dnmef _Webservi ce) ;
Generate the IDMEF webservice XML tag.

00246 voi d generate_my xm _snnp_servi ce(i dmef_snnp_servi ce
*| dmef _Snnp_Servi ce) ;
Generate the IDMEF snmp service XML tag.

00255 void generate my xml filelist(idmef filelist *Idmef_Filelist);
Generate the IDMEF fildist XML tag.

00264 voi d generate_nmy xml i node(i dnef i node *Idnmef _I node);

Melanie Rose Rieback (1113410) Page103of 117

TheMeta-Alert Correlation Engine (MACE)

Generate the IDMEF inode XML tag.

00273 void generate my xm file(idmef file *lIdmef_File);
Generate the IDMEF file XML tag.

00282 void generate nmy xml fileaccess(idnmef fileaccess
*| dmef _Fi | eaccess);

Generate the IDMEF fileaccess XML tag.

00291 voi d generate ny xm |inkage(idnmef |inkage *Idmef _Li nkage) ;
Generate the IDMEF linkage XML tag.

00300 voi d generate_my_xm _user (idnmef_user *1dmef_User);
Generate the IDMEF user XML tag.

00309 voi d generate nmy xml userid(idnmef userid *Idnmef_Userid)
Generate the IDMEF userid XML tag.

00318 voi d generate ny xm nessage(i dmef nessage *I|dnmef _Message) ;
Generate the IDMEF message XML tag.

00327 void return_nmy xm string(idnef object *Idmef_Object);
Generate the IDMEF XML string, given a passed IDMEF Object instance.

00336 void print my xm object (idmef object *Idnef_Object);
Print the XML string for the passed IDMEF object to the screen.

00349 void parse_my xm _string(char *xm _string, idnmef_object

*| dmef _Obj ect) ;

Parse the provided XML string, filling in the appropriate information in the IDMEF
Object instance.

00364 void print xml object(idnmef object *Idmef_0Object);
C++ function to call the C-compatible print_my_xml_object function.

00379 char *return xm string(idmef object *Idmef_Object);
C++ function to call the C-compatible return_my_xml_string function.

00393 void parse_xm _string(char *xm _string, idnmef_object
*| dnmef _CObj ect) ;
C++ function to call the C-compatible parse_my_xml_string function.

00395 void set_xm gl obal s()
Set the global variables that libidmef needs to generate IDMEF XML.

Libmace

aux_stuff.h

Melanie Rose Rieback (1113410) Pagel104of 117

TheMeta-Alert Correlation Engine (MACE)

00016 int query_hex_payl oad_from db(char *, char *)
Query a hex data payload from the database.

00017 int convert from hex(char *, char *);
Convert the passed strings from hex into ascii.

00018 int get ascii_ packet payl oad(char *, char *);
Query data payload from database, and return as ascii.

error.h

00011 void err_ret(const char *fm, ...);
Non-fatal error related to a system call. Print a message and return.

00012 void err_sys(const char *fnt, ...);
Fatal error related to asystem call. Print a message and terminate.

00013 void err_dunmp(const char *fnt, ...);
Fatal error related to a system call. Print a message, dump core, and terminate.

00014 void err_nsg(const char *fnt, ...);
Non-fatal error unrelated to a system call. Print a message and return.

00015 void err_quit(const char *fm, ...);
Fatal error unrelated to a system call. Print a message and termi nate.

00016 static void err_doit(int errnoflag, int level, const char *fnt,
va_list ap);
Print a message and return to caller. Caller specifies “errnoflag” and “level”.

(Note: These error functions are being used to handle the socket-related errors. These
functions were written by Richard Stevens, for demonstration of error handling
throughout his many excellent books. The source code can be downloaded from his
website- http://www.kohala.com/start/unpv12e/unpv12e.tar.gz)

misc.h

char *itoa(int);
Convert an integer into a character string.

socket.h

00007 int Socket(int famly, int type, int protocol);
Create a communications socket — wrapper function w/ error handling.

00008 void Connect (int fd, const struct sockaddr *sa, socklen_t salen);
Connect the socket to a specific address / port — wrapper function w/ error handling.

Melanie Rose Rieback (1113410) Pagel05of 117

TheMeta-Alert Correlation Engine (MACE)

00009 void Inet pton(int famly, const char *strptr, void *addrptr);
Convert address from presentation to network format — wrapper function w/ error

handling.

00007 ssize_t readline(int, void *, size_t);
Read aline of data from the socket.

00008 ssi ze_t readn(int, void *, size_t);
Read specified number of characters from the socket.

00009 ssi ze_t witen(int, const void *, size_t);
Write a specified number of characters to the socket.

00010 ssi ze_t Read(int, void *, size_t);
Read specified number of characters from the socket — wrapper function w/ error
handling.

00011 ssi ze_t Readl i ne(int, void *, size_t);
Read aline of data from the socket — wrapper function w/ error handling.

00012 void Witen(int, void *, size_t);
Write a specified number of characters to the socket —wrapper function w/ error
handling.

(Note: These socket wrapper functions were written by Richard Stevens, for

demonstration purposes throughout his many excellent books. The source code can be
downloaded from his website - http://www.kohala.com/start/unpv12e/unpvl2e.tar.gz)

MACE Expert System

clips_heartbeat_processing.h

00016 void construct heartbeat input(string *, idnef object *);
Construct an IDMEF heartbeat, given a passed idmef_object.

idmefdb_api.h

00016 void send idnef object to db(idmef object *, database query *);
Send the entire IDMEF object to the metaalert database.

00017 void send idnef address to db(idnef address *, string *, string
* database query *);
Add the IDMEF address to the correct entry in the metaalert database.

00018 void send_idnmef _createtinme_to_db(idmef_tinme *, string *, string
* dat abase query *);
Add the IDMEF createtime to the correct entry in the metaalert database.

Melanie Rose Rieback (1113410) Pagel106 of 117

TheMeta-Alert Correlation Engine (MACE)

00019 void send idnef detecttinme to db(idnmef tinme *, string *, string
* dat abase_query *);

Add the IDMEF detecttime to the correct entry in the metaalert database.

00020 void send i dnef _analyzertine to db(idnmef tinme *, string *, string
* dat abase _query *);

Add the IDMEF analyzertime to the correct entry in the metaalert database.

00021 void send_idnmef classification to db(idnmef classification *,
string *, string *, database query *);

Add the IDMEF classification to the correct entry in the metaalert database.

00022 void send idnef userid to db(idmef userid *, string *, string *,
dat abase_query *);

Add the IDMEF userid to the correct entry in the metaaert database.

00023 void send_idnmef_user _to _db(idnef_user *, string *, string *,
dat abase_query *);
Add the IDMEF user to the correct entry in the metaalert database.

00024 void send_idnmef_snnp_service to db(idmef_snnp_service *, string
* string *, database query *);
Add the IDMEF SNMP service to the correct entry in the metaalert database.

00025 void send_idmef webservice to_db(i dmef webservice *, string *,
string *, database query *);
Add the IDMEF webservice to the correct entry in the metaalert database.

00026 void send idnef service to db(idnef service *, string *, string
* dat abase query *);
Add the IDMEF service to the correct entry in the metaalert database.

00027 void send idnef process to db(idnef process *, string *, string
* dat abase query *);
Add the IDMEF process to the correct entry in the metaalert database.

00028 void send_i dnmef _node_t o_db(i dnef _node *, string *, string *,
dat abase _query *);
Add the IDMEF node to the correct entry in the metaalert database.

00029 void send idnmef fileaccess to db(idnmef fileaccess *, string *,
string *, database query *);

Add the IDMEF fileaccess to the correct entry in the metaalert database.

00030 void send_idnef |inkage to db(idnmef |inkage *, string *, string
* dat abase_query *);

Add the IDMEF linkage to the correct entry in the metaalert database.

00031 void send idnmef inode to db(idnmef inode *, string *, string *,
dat abase_query *);

Add the IDMEF inode to the correct entry in the metaalert database

Melanie Rose Rieback (1113410) Page107 of 117

TheMeta-Alert Correlation Engine (MACE)

00032 void send_idnef file to db(idnmef file *, string *, string *,
dat abase _query *);
Add the IDMEF file to the correct entry in the metaalert database.

00033 void send_idnmef _filelist to db(idmef filelist *, string *, string
*, dat abase _query *);
Add the IDMEF filelist to the correct entry in the metaalert database.

00034 void send_i dnef _source_to_db(i dmef _source *, string *, string *,
dat abase _query *);
Add the IDMEF source to the correct entry in the metaalert database.

00035 void send_idnef _target_to_db(idmef_target *, string *, string *,
dat abase_query *);
Add the IDMEF target to the correct entry in the metaalert database.

00036 void send idnef inpact to db(idmef inpact *, string *, string *,
dat abase_query *);

Add the IDMEF impact to the correct entry in the metaalert database.

00037 void send idnef action to db(idmef action *, string *, string *,
dat abase _query *);

Add the IDMEF action to the correct entry in the metaalert database.

00038 void send idnmef confidence to db(idnmef confidence *, string *,
string *, database query *);

Add the IDMEF confidence to the correct entry in the metaalert database.

00039 void send idnmef assessnent to db(i dnef assessnment *, string *,
string *, database query *);

Add the IDMEF assessmert to the correct entry in the metaalert database..

00040 void send idnmef alertident to db(idnef alertident *, string *,
string *, database_query *);
Add the IDMEF alertident to the correct entry in the metaalert database.

00041 void send_i dnef _additional data to_db(i dnmef addi ti onal data *,
string *, string *, database query *);
Add the IDMEF additionaldata to the carect entry in the metaalert database.

00042 void send_idnmef_anal yzer _to_db(idnmef_anal yzer *, string *, string
* database query *);
Add the IDMEF analyzer to the correct entry in the metaaert database.

00043 void send_idmef _toolalert to db(idnmef_toolalert *, string *,
string *, database query *);
Add the IDMEF tooldert to the correct entry in the metaalert database.

00044 void send_idmef _overflowal ert to db(idmef_overflowal ert *, string
* string *, database query *);

Melanie Rose Rieback (1113410) Page108of 117

TheMeta-Alert Correlation Engine (MACE)

Add the IDMEF overflowalert to the correct entry in the metaalert database.

00045 void send idnmef _correlationalert to db(idnmef correl ationalert *,
string *, string *, database query *);

Add the IDMEF correlationaert to the correct entry in the metaalert database.

00046 void send idnmef alert to db(idnmef _alert *, string *, string *,
dat abase_query *);

Add the IDMEF dert to the correct entry in the metaalert database.

00047 void send_idmef heartbeat to db(i dmef heartbeat *, string *,
string *, database query *);
Add the IDMEF heartbeat to the correct entry in the metaalert database.

00048 void send i dnef nessage to db(i dnef nessage *, database query *);
Add the IDMEF message to the correct entry in the metaalert database.

00049 void query nmax_entity index(string *, string *, database query
*) ,
Query the maximum entity index of a specific kind of IDMEF element.

00050 void send arg to db(char *, string *, string *, database query
*) , X
Add the arg to the correct entry in the metaalert database.

00051 void send env_to_db(char *, string *, string *, database query
*) ,
Add the env to the correct entry in the metaalert database.

00052 void send_perm ssion_to_db(char *, string *, string *,
dat abase_query *);

Add the IDMEF permission to the correct entry in the metaalert database.

generate clips_object.h

00011 void generate clips_address(idnmef _address *, string *, string *,
int *);

Generate the CLIPS representation of a passed IDMEF address.

00012 void generate_clips_createtinme(idnmef_tine *, string *, string *,
int *);
Generate the CLIPS representation of a passed IDMEF createtime.

00013 void generate_clips_analyzertine(idmef time *, string *, string
*oint *);
Generate the CLIPS representation of a passed IDMEF analyzertime.

00014 void generate clips detecttinme(idnef tinme *, string *, string *,
int *);
Generate the CLIPS representation of a passed IDMEF detecttime.

Melanie Rose Rieback (1113410) Page109of 117

TheMeta-Alert Correlation Engine (MACE)

00015 void generate clips classification(idnmef classification *, string
* string *, int *);
Generate the CLIPS representation of a passed IDMEF classification.

00016 void generate clips userid(idnef userid *, string *, string *,
int *);
Generate the CLIPS representation of a passed IDMEF userid.

00017 void generate clips user(idmef_user *, string *, string *, int
*) ,
Generate the CLIPS representation of a passed IDMEF user.

00018 void generate clips snnp_service(idmef _snnp_service *, string *,
string *, int *);
Generate the CLIPS representation of a passed IDMEF SNMP service.

00019 void generate_clips_webservice(i dmef_webservice *, string *,
string *, int *);
Generate the CLIPS representation of a passed IDMEF webservice.

00020 void generate clips_service(idnmef_service *, string *, string *,
int *);

Generate the CLIPS representation of a passed IDMEF service.

00021 void generate clips _process(idnef _process *, string *, string *,
int *);

Generate the CLIPS representation of a passed IDMEF process.

00022 void generate clips _node(i dmef _node *, string *, string *, int
*) ,
Generate the CLIPS representation of a passed IDMEF node.

00023 void generate clips fileaccess(idnmef fileaccess *, string *,
string *, int *);
Generate the CLIPS representation of a passed IDMEF fileaccess.

00024 void generate_clips_linkage(idnmef_linkage *, string *, string *,
int *);

Generate the CLIPS representation of a passed IDMEF linkage.

00025 void generate clips inode(idmef inode *, string *, string *, int

*) ,
Generate the CLIPS representation of a passed IDMEF inode.

00026 void generate clips file(idnmef file *, string *, string *, int
*) ,
Generate the CLIPS representation of a passed IDMEF file..

00027 void generate clips filelist(idnmef filelist *, string *, string
*oint *);
Generate the CLIPS representation of a passed IDMEF filelist.

Melanie Rose Rieback (1113410) Page110o0f 117

TheMeta-Alert Correlation Engine (MACE)

00028 voi d generate _clips_source(idnef_source *, string *, string *,
int *);
Generate the CLIPS representation of a passed IDMEF source.

00029 void generate clips_target (idmef _target *, string *, string *,
int *);
Generate the CLIPS representation of a passed IDMEF target.

00030 void generate _clips_inpact (i dmef _inpact *, string *, string *,
int *);

Generate the CLIPS representation of a passed IDMEF impact.

00031 void generate_clips_action(idmef_action *, string *, string *,
int *);

Generate the CLIPS representation of a passed IDMEF action.

00032 void generate clips confidence(idnmef confidence *, string *,
string *, int *);
Generate the CLIPS representation of a passed IDMEF confidence.

00033 void generate clips assessnent (i dnmef assessnent *, string *,
string *, int *);
Generate the CLIPS representation of a passed IDMEF assessment.

00034 void generate clips alertident (idmef alertident *, string *,
string *, int *);
Generate the CLIPS representation of a passed IDMEF alertident.

00035 void generate clips additionaldata(idnmef additionaldata *, string
* string *, int *);
Generate the CLIPS representation of a passed IDMEF additionaldata.

00036 void generate clips analyzer(idnef analyzer *, string *, string
* int *);
Generate the CLIPS representation of a passed IDMEF analyzer.

00037 void generate_clips_toolalert(idnef_toolalert *, string *, string
*oint *);
Generate the CLIPS representation of a passed IDMEF toolalert.

00038 void generate_clips_overflowal ert(idnef_overfl owal ert *, string
* string *, int *);
Generate the CLIPS representation of a passed IDMEF overflowalert.

00039 void generate_clips_correl ational ert(idnef_correl ati onal ert *,
string *, string *, int *);

Generate the CLIPS representation of a passed IDMEF correlationalert.

00040 void generate clips_alert(idmef_alert *, string *, string *, int

*),

Melanie Rose Rieback (1113410) Pagelllof 117

TheMeta-Alert Correlation Engine (MACE)

Generate the CLIPS representation of a passed IDMEF alert.

00041 void generate clips heartbeat(idnef heartbeat *, string *, string
*oint *);

Generate the CLIPS representation of a passed IDMEF heartbeat.

00042 void generate clips message(idnef nessage *, string *, string *,
int *);

Generate the CLIPS representation of a passed IDMEF message.

00043 void generate clips_object (string *, idnmef_object *);
Generate the CLIPS representation of a passed IDMEF object.

putalert.h

00020 void process netaalert (string, database query *, database query
* protocol *);

Process each metaalert that appears as output from CLIPS.

00021 void send netaalert to db(idnef object *, database query *);
Send the metaalert to the IDMEF metadert database.

snort_viewer.h

00020 void add_snort _schene i nfo(database query *);
Add the Snort schema version number to the viewer database.

00021 int check_existance_snort_schema_i nf o(dat abase query *);
Check to see if the Snort schema version number already exists in the viewer database.

00022 void send netaalert to viewer db(idmef object *, database query
*) ,
Send the metaalert to the Snort-format viewer database.

00023 void popul ate event table from netaal ert (i dnef object *,
dat abase query *);

Populate the Snort event table with data taken from the IDMEF metaalerts.

00024 void popul ate_i phdr _table from netaal ert (i dnef _obj ect *,
dat abase query *);

Populate the Snort iphdr table with data taken from the IDMEF metaalerts.

00025 void popul ate_signature_table from netaal ert (i dnmef _obj ect *,
dat abase query *);

Populate the Snort signature table with data taken from the IDMEF metaal erts.

00026 int get_internal sigid(string *, string *, database_query *);
Get the internal sig_id representation of the desired signature, given the sig_name.

Melanie Rose Rieback (1113410) Pagel12of 117

TheMeta-Alert Correlation Engine (MACE)

00027 void popul ate tcphdr table from netaal ert(idnef object *,
dat abase _query *);

Populate the Snort tcphdr table with data taken from the IDMEF metaalerts.

00028 void popul ate udphdr table from netaal ert(idnef object *,
dat abase _query *);

Populate the Snort udphdr table with data taken from the IDMEF metaalerts.

00029 void popul ate protocol tables from netaal ert (i dnmef object *,
dat abase_query *);

Popul ate the Snort protocol table with data taken from the IDM EF metaal erts.

00030 void popul ate sensor_table from netaal ert(idnef object *,
dat abase_query *);

Populate the Snort sensor table with data taken from the IDMEF metaalerts.

00031 int get_internal sensorid(string *, string *, string *,
dat abase_query *);
Get the internal sensor_id representation of the desired sensor, given the sig_name.

00032 void popul ate_sig class table from netaal ert (i dmef _obj ect *,
dat abase query *);
Populate the Snort sig_class table with data taken from the IDMEF metaalerts.

00033 int get_internal sigclassid(string *, string *, database query
*) ,

Get the internal sig_class id representation of the desired signature class, given the
Sig_class name.

00034 void popul ate reference systemtable from netaal ert(idnef object
* dat abase _query *);

Populate the Snort reference_system table with data taken from the IDMEF metaalerts.

00035 void popul ate reference table from netaal ert (i dmef object *,
dat abase_query *);

Populate the Snort reference table with data taken from the IDM EF metaal erts.

00036 int get _internal refsysid(string *, string *, database query *);
Get the internal refsys id representation of the desired reference system, given the
refsys name.

00037 int get internal referenceid(string *, string *, string *,
dat abase_query *);
Get the internal ref_id representation of the desired reference, given the ref_ name.

00038 void popul ate sig reference table from netaal ert (i dmef obj ect *,
dat abase query *);

Populate the Snort sig_reference table with data taken from the IDMEF metaalerts.

00039 int check existance sig reference(string *, string *, string *,
dat abase query *);

Melanie Rose Rieback (1113410) Page113of 117

TheMeta-Alert Correlation Engine (MACE)

Check to see if the Snort signature reference entry already exists in the viewer database.

00040 void popul ate data table from netaal ert(idnef object *,
dat abase_query *);

Populate the Snort data table with data taken from the IDMEF metaalerts.

MACE Preprocessing

clips_client.h

00017 int connect to clips server(tcp socket *)
Initiate a connection with the CLIPS server.

00018 int send alert _to_clips(idmef_object *, tcp_socket *)
Send an IDMEF object to the CLIPS server.

00019 int send run_to clips(tcp_socket *);
Send a‘run’ command heartbeat to the CLIPS engine.

00020 int disconnect fromclips server(tcp _socket *);
Break the connection with the CLIPS server.

00021 void construct_conmmand_heart beat (string *, string *);
Construct an IDMEF heartbeat the contains a command for the CLIPS server.

00022 void send line to clips(string *, tcp socket *);
Send a line across the socket to the CLIPS engine.

PAM Snort

getalert.h

00047 void initialize xm gl obal s()
Initialize the global variables required to use libidmef.

00048 int get_current_sensor_list(sensor_list *);
Get alist of the sensor id's contained in the primary Snort database.

00049 int get sensor nmex _cids(sensor list *);
Get the maximum CID value for each of the sensors.

00050 int allocate alert structure(i dmef object *);
Allocate memory necessary to store alert datain an IDMEF Object.

00051 int query_next_alert(char *, char *, idnmef_object *, protocol *);
Query the next aert from the primary Snort database.

Melanie Rose Rieback (1113410) Pagel14of 117

TheMeta-Alert Correlation Engine (MACE)

00052 int query next cid(char *, char *, string *);
Query the next aert CID from the primary Snort database.

00053 int query alert fromdb(char *, char *, idnmef_object *, protocol
*) ,
Query the specified aert from the primary Snort database.

00054 int query attack type fromdb(char *, char *, string *);
Query the specified attack type from the primary Snort database.

00055 int query attack name fromdb(char *, char *, string *);
Query the specified attack name from the primary Snort database.

00056 int query ip protocol fromdb(char *, char *, string *, protoco
*) ,
Query the specified IP protocol from the primary Snort database.

00057 int query tinestanp fromdb(char *, char *, string *);
Query the specified timestamp from the primary Snort database.

00058 int query src_ip_address fromdb(char *, char *, string *)
Query the specified source IP address from the primary Snort database.

00059 int query dest ip address fromdb(char *, char *, string *);
Query the specified destination | P address from the primary Snort database.

00060 int query src port fromdb(char *, char *, string *);
Query the specified source port from the primary Snort database.

00061 int query dest _port_fromdb(char *, char *, string *)
Query the specified destination port from the primary Snort database.

00062 int query sensor nane_fromdb(char *, string *);
Query the specified sensor name from the primary Snort database.

00063 int query attack url fromdb(char *, char *, string *);
Query the specified attack URL from the primary Snort database.

00064 int query packet payload from db(char *, char *, string *);
Query the specified packet payload from the primary Snort database.

00065 void filter special characters(string *);
Filter specia characters out of the (ASCII) packet payload before it is sent to the
database.

00066 int query interface fromdb(char *, string *);
Query the specified interface from the primary Snort database.

mace client.h

Melanie Rose Rieback (1113410) Pagel15o0f 117

TheMeta-Alert Correlation Engine (MACE)

00016 int connect to mace server (tcp socket *);
Initiate a connection with the MACE server.

00017 int send alert to nace_server(string, tcp_socket *);
Send an IDMEF dert to the MACE server.

00018 int disconnect from mace server(tcp socket *);
Break the connection with the MACE server.

Melanie Rose Rieback (1113410) Pagel16of 117

